Analysis of electron transport in a high-mobility freestanding GaN substrate grown by hydride vapor-phase epitaxy

F. Yun, H. Morkoç, D. L. Rode, Kong-Thon Tsen, L. Farina, Ç Kurdak, S. S. Park, K. Y. Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Semiconductor nitrides grown on substrates with a large lattice mismatch typically contain extended and point defects that prevent the full potential of this material system from being attained. Among all the substrate options explored so far, freestanding GaN templates appear ideal for homoepitaxial growth of GaN films. To this end, hydride vapor-phase epitaxial (HVPE) grown GaN templates with a thickness of more than 200 μm were thermally lifted off from the sapphire substrate and mechanically polished. The defect density of such a template is expected to be non-uniform in the growth direction, especially near the back surface which was in close vicinity of the sapphire substrate. We, therefore, studied the transport properties of this template before and after the removal of a 30 μm region from the back-side. For as-prepared GaN, Hall mobilities of 1100 cm2/V-s and 6800 cm 2/V-s were obtained at 295 K and 50 K, respectively. A simultaneous fitting of mobility and carrier concentration was used to quantify the contribution of different scattering mechanisms. When the backside was etched by -30 μm, Hall mobilities improved to 1200 cm2/V-s at 295 K and 7385 cm2/V-s at 48 K, respectively. A numerical solution of the Boltzmann transport equation (BTE) that deals with the inelastic nature of electron scattering by polar optical mode was employed to determine the acceptor concentration. Raman spectroscopy was employed to obtain LO and TO phonon energies, which were then used in the above-mentioned calculations. The best fittings of the mobility and carrier concentration data yield an average acceptor concentration of 4.9×1015 cm-3 and a donor concentration of 2.1×1016 cm-3for the as-prepared GaN. The average acceptor concentration decreased to 2.4× 1015 cm-3 after etching of the backside, which confirms that the etched-away region contained higher density of defects. The donor activation energy is derived to be 25.2 meV. Our analysis demonstrated high quality of the freestanding GaN substrate with the highest reported electron mobility for wurtzite GaN.

Original languageEnglish (US)
Title of host publicationWide-Bandgap Electronics
PublisherMaterials Research Society
Pages8-13
Number of pages6
ISBN (Print)1558996168, 9781558996168
DOIs
StatePublished - Jan 1 2001
Event2001 MRS Spring Meeting - San Francisco, CA, United States
Duration: Apr 16 2001Apr 20 2001

Publication series

NameMaterials Research Society Symposium Proceedings
Volume680
ISSN (Print)0272-9172

Other

Other2001 MRS Spring Meeting
CountryUnited States
CitySan Francisco, CA
Period4/16/014/20/01

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Analysis of electron transport in a high-mobility freestanding GaN substrate grown by hydride vapor-phase epitaxy'. Together they form a unique fingerprint.

  • Cite this

    Yun, F., Morkoç, H., Rode, D. L., Tsen, K-T., Farina, L., Kurdak, Ç., Park, S. S., & Lee, K. Y. (2001). Analysis of electron transport in a high-mobility freestanding GaN substrate grown by hydride vapor-phase epitaxy. In Wide-Bandgap Electronics (pp. 8-13). (Materials Research Society Symposium Proceedings; Vol. 680). Materials Research Society. https://doi.org/10.1557/proc-680-e2.2