A Visual Inertial Odometry Framework for 3D Points, Lines and Planes

Shenbagaraj Kannapiran, Jeroen Van Baar, Spring Berman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Recovering rigid registration between successive camera poses lies at the heart of 3D reconstruction, SLAM and visual odometry. Registration relies on the ability to compute discriminative 2D features in successive camera images for determining feature correspondences, which is very challenging in feature-poor environments, i.e. low-texture and/or low-light environments. In this paper, we aim to address the challenge of recovering rigid registration between successive camera poses in feature-poor environments in a Visual Inertial Odometry (VIO) setting. In addition to inertial sensing, we instrument a small aerial robot with an RGBD camera and propose a framework that unifies the incorporation of 3D geometric entities: points, lines, and planes. The tracked 3D geometric entities provide constraints in an Extended Kalman Filtering framework. We show that by directly exploiting 3D geometric entities, we can achieve improved registration. We demonstrate our approach on different texture-poor environments, with some containing only flat texture-less surfaces providing essentially no 2D features for tracking. In addition, we evaluate how the addition of different 3D geometric entities contributes to improved pose estimation by comparing an estimated pose trajectory to a ground truth pose trajectory obtained from a motion capture system. We consider computationally efficient methods for detecting 3D points, lines and planes, since our goal is to implement our approach on small mobile robots, such as drones.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9206-9211
Number of pages6
ISBN (Electronic)9781665417143
DOIs
StatePublished - 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: Sep 27 2021Oct 1 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period9/27/2110/1/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A Visual Inertial Odometry Framework for 3D Points, Lines and Planes'. Together they form a unique fingerprint.

Cite this