## Abstract

We have measured the temperature- and field-dependent longitudinal conductivity, σ_{xx}, in the Landau level tails of two modulation-doped Si/Si_{1-x}Ge_{x} two-dimensional electron gas samples at temperatures below 1 K. The temperature dependence of σ_{xx} at the minima of the Shubnikov-de Haas oscillations obeyed a relation of the form σ_{xx}^{min} (T) ∝ (1/T) exp[-(T_{0}T)^{ 1/2 }], in agreement with published models of variable-range hopping between localized states by Ono and by Polyakov and Shklovskii. However, the value and magnetic field dependence of the characteristic temperature, T_{0}, cannot be explained quantitatively on Ono's model, which is based on Gaussian localization of the electron wavefunction on a scale given by the magnetic length. Polyakov and Shklovskii used exponential wavefunctions to derive an alternative expression for the characteristic temperature, and to model the conductivity in the vicinity of the peaks between adjacent quantum Hall plateaux. Our results have been analysed according to this theory, and show good agreement: the magnetic field dependence of the corresponding characteristic temperature, T_{1} (v), obeys the power law relation. T_{1} ∝ (Δv)^{γ}, as expected from theory, while the experimental value of γ, 0.90 ± 0.07, agreed with that determined from a half-width analysis of the σ_{xx} peaks; however, this value differs from the theoretically predicted figure of approx. 2.3.

Original language | English (US) |
---|---|

Pages (from-to) | 762-767 |

Number of pages | 6 |

Journal | Semiconductor Science and Technology |

Volume | 14 |

Issue number | 9 |

DOIs | |

State | Published - Sep 1 1999 |

## ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering
- Materials Chemistry