Uniform persistence in nonautonomous delay differential kolmogorov-type population models

Yang Kuang, Baorong Tang

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

In this paper we establish sufficient conditions for uniform persistence in nonautonomous Kolmogorov-type delayed population models. The method involves the con­struction of a set of proper autonomous ordinary differential systems whose solutions can serve as lower or upper bounds for the delayed system in certain regions. The results are new even for nonautonomous ordinary differential systems.

Original languageEnglish (US)
Pages (from-to)165-186
Number of pages22
JournalRocky Mountain Journal of Mathematics
Volume24
Issue number1
DOIs
StatePublished - 1993

Keywords

  • Kolmo­gorov-type population models
  • Lotka-Volterra systems
  • Nonautonomous delayed systems
  • Persistence

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Uniform persistence in nonautonomous delay differential kolmogorov-type population models'. Together they form a unique fingerprint.

Cite this