48 Scopus citations

Abstract

In the era of big data it is increasingly difficult for an analyst to extract meaningful knowledge from a sea of information. We present TweetXplorer, a system for analysts with little information about an event to gain knowledge through the use of effective visualization techniques. Using tweets collected during Hurricane Sandy as an example, we will lead the reader through a workow that exhibits the functionality of the system.

Original languageEnglish (US)
Title of host publicationKDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
EditorsRajesh Parekh, Jingrui He, Dhillon S. Inderjit, Paul Bradley, Yehuda Koren, Rayid Ghani, Ted E. Senator, Robert L. Grossman, Ramasamy Uthurusamy
PublisherAssociation for Computing Machinery
Pages1482-1485
Number of pages4
ISBN (Electronic)9781450321747
DOIs
StatePublished - Aug 11 2013
Event19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013 - Chicago, United States
Duration: Aug 11 2013Aug 14 2013

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F128815

Other

Other19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013
CountryUnited States
CityChicago
Period8/11/138/14/13

Keywords

  • Big data
  • Geospatial analysis
  • Retweet network
  • Twitter visualization

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Understanding twitter data with tweetxplorer'. Together they form a unique fingerprint.

  • Cite this

    Morstatter, F., Kumar, S., Liu, H., & Maciejewski, R. (2013). Understanding twitter data with tweetxplorer. In R. Parekh, J. He, D. S. Inderjit, P. Bradley, Y. Koren, R. Ghani, T. E. Senator, R. L. Grossman, & R. Uthurusamy (Eds.), KDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1482-1485). [2487703] (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Vol. Part F128815). Association for Computing Machinery. https://doi.org/10.1145/2487575.2487703