Turbulence properties of high and low swirl in-cylinder flows

Charles Funk, Volker Sick, David L. Reuss, Werner Dahm

Research output: Chapter in Book/Report/Conference proceedingConference contribution

45 Scopus citations


In previous work, Reuss [1] studied the cycle-to-cycle variation in the large-scale velocity structures of high and low-swirl in-cylinder flows of an IC engine. The vector flow fields were obtained from PIV measurements in a two-valve, pancake-shaped, Transparent Combustion Chamber (TCC) engine. In this study, the Reynolds-decomposed turbulence properties such as kinetic energy, length scales, and dissipation rate were directly measured for the two cases. The results demonstrate that, at TDC compression, the low-swirl flow is dominated by turbulence at the largest scales, whereas the high-swirl flow has a considerably lower turbulence Reynolds number. The dissipation rate and length scale calculated from mixing-length theory greatly exceeded the dissipation computed from the 2-D velocity-gradients and integral-length scales computed from the autocorrelation, respectively.

Original languageEnglish (US)
Title of host publicationSAE Technical Papers
StatePublished - 2002
Externally publishedYes
EventPowertrain and Fluid Systems Conference and Exhibition - San Diego, CA, United States
Duration: Oct 21 2002Oct 24 2002


OtherPowertrain and Fluid Systems Conference and Exhibition
Country/TerritoryUnited States
CitySan Diego, CA

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Turbulence properties of high and low swirl in-cylinder flows'. Together they form a unique fingerprint.

Cite this