Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3

G. T. Lin, H. L. Zhuang, X. Luo, B. J. Liu, F. C. Chen, J. Yan, Y. Sun, J. Zhou, W. J. Lu, P. Tong, Z. G. Sheng, Z. Qu, W. H. Song, X. B. Zhu, Y. P. Sun

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

CrGeTe3 recently emerges as a new two-dimensional (2D) ferromagnetic semiconductor that is promising for spintronic device applications. Unlike CrSiTe3 whose magnetism can be understood using the 2D-Ising model, CrGeTe3 exhibits a smaller van der Waals gap and larger cleavage energy, which could lead to a transition of magnetic mechanism from 2D to 3D. To confirm this speculation, we investigate the critical behavior of CrGeTe3 around the second-order paramagnetic-ferromagnetic phase transition. We obtain the critical exponents estimated by several common experimental techniques including the modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis, which show that the magnetism of CrGeTe3 follows the tricritical mean-field model with the critical exponents β, γ, and δ of 0.240±0.006, 1.000±0.005, and 5.070±0.006, respectively, at the Curie temperature of 67.9 K. We therefore suggest that the magnetic phase transition from 2D to 3D for CrGeTe3 should locate near a tricritical point. Our experiment provides a direct demonstration of the applicability of the tricritical mean-field model to a 2D ferromagnetic semiconductor.

Original languageEnglish (US)
Article number245212
JournalPhysical Review B
Volume95
Issue number24
DOIs
StatePublished - Jun 30 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3'. Together they form a unique fingerprint.

Cite this