Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study

Elsy A. Escobar, Paul Dahlen, Paul C. Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The diffusive transport of volatile organic compounds (VOCs) in the subsurface at petroleum spill sites can significantly affect vapor migration from sources to buildings and ground surface. Thus, knowledge of compound-specific vapor transport and bio-attenuation is of great interests to those who must identify risks and make corrective action decisions for petroleum spill sites. In this work, the vapor transport of individual compounds in complex petroleum vapor mixtures is being studied for idealized lithologies in 2-m (6-ft) tall laboratory soil columns. Six columns, representing different geological settings were prepared using 40-60 mesh sand (medium grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source is composed by twelve petroleum hydrocarbons that typify weathered gasoline. The liquid hydrocarbon mixture is placed in a chamber at the bottom of each column, and the vapors are allowed to diffuse upward through the soil to a chamber at the top of the columns, which is swept with humidified gas. The contaminant source vapor concentration is maintained constant throughout the experimental period by periodic replacement of the liquid. The experiment is conducted for two cases: i) anaerobic conditions, in which the sweep gas at the top of the column is nitrogen and no biodegradation is expected to occur; and ii) aerobic conditions; in which, air is the sweep gas; this phase will performed in the near future. Soil diffusion coefficients, and oxygen, carbon dioxide and hydrocarbon vapor concentration of each chemical are monitored over time in the column and the effluent sweep gas. The data allow determination of compound-specific flux and times for steady profiles to be achieved. The anaerobic phase of the experiment is ongoing. Results show that vapor transport is highly influenced by the chemical and physical properties of the chemicals, soil moisture, soil effective diffusion coefficients and geological settings.

Original languageEnglish (US)
Title of host publicationAir and Waste Management Association - Vapor Intrusion 2010
Pages226-259
Number of pages34
Volume1
StatePublished - 2010
EventAir and Waste Management Association - Vapor Intrusion 2010 - Chicago, IL, United States
Duration: Sep 29 2010Sep 30 2010

Other

OtherAir and Waste Management Association - Vapor Intrusion 2010
CountryUnited States
CityChicago, IL
Period9/29/109/30/10

Fingerprint

petroleum hydrocarbon
soil column
Crude oil
Hydrocarbons
Vapors
Soils
petroleum
gas
hydrocarbon
liquid
Hazardous materials spills
soil
pollutant
Gases
oxic conditions
anoxic conditions
volatile organic compound
chemical property
biodegradation
lithology

ASJC Scopus subject areas

  • Environmental Engineering
  • Waste Management and Disposal

Cite this

Escobar, E. A., Dahlen, P., & Johnson, P. C. (2010). Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study. In Air and Waste Management Association - Vapor Intrusion 2010 (Vol. 1, pp. 226-259)

Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study. / Escobar, Elsy A.; Dahlen, Paul; Johnson, Paul C.

Air and Waste Management Association - Vapor Intrusion 2010. Vol. 1 2010. p. 226-259.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Escobar, EA, Dahlen, P & Johnson, PC 2010, Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study. in Air and Waste Management Association - Vapor Intrusion 2010. vol. 1, pp. 226-259, Air and Waste Management Association - Vapor Intrusion 2010, Chicago, IL, United States, 9/29/10.
Escobar EA, Dahlen P, Johnson PC. Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study. In Air and Waste Management Association - Vapor Intrusion 2010. Vol. 1. 2010. p. 226-259
Escobar, Elsy A. ; Dahlen, Paul ; Johnson, Paul C. / Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study. Air and Waste Management Association - Vapor Intrusion 2010. Vol. 1 2010. pp. 226-259
@inproceedings{c7968333740b48de8a375ce0b3163fe6,
title = "Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study",
abstract = "The diffusive transport of volatile organic compounds (VOCs) in the subsurface at petroleum spill sites can significantly affect vapor migration from sources to buildings and ground surface. Thus, knowledge of compound-specific vapor transport and bio-attenuation is of great interests to those who must identify risks and make corrective action decisions for petroleum spill sites. In this work, the vapor transport of individual compounds in complex petroleum vapor mixtures is being studied for idealized lithologies in 2-m (6-ft) tall laboratory soil columns. Six columns, representing different geological settings were prepared using 40-60 mesh sand (medium grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source is composed by twelve petroleum hydrocarbons that typify weathered gasoline. The liquid hydrocarbon mixture is placed in a chamber at the bottom of each column, and the vapors are allowed to diffuse upward through the soil to a chamber at the top of the columns, which is swept with humidified gas. The contaminant source vapor concentration is maintained constant throughout the experimental period by periodic replacement of the liquid. The experiment is conducted for two cases: i) anaerobic conditions, in which the sweep gas at the top of the column is nitrogen and no biodegradation is expected to occur; and ii) aerobic conditions; in which, air is the sweep gas; this phase will performed in the near future. Soil diffusion coefficients, and oxygen, carbon dioxide and hydrocarbon vapor concentration of each chemical are monitored over time in the column and the effluent sweep gas. The data allow determination of compound-specific flux and times for steady profiles to be achieved. The anaerobic phase of the experiment is ongoing. Results show that vapor transport is highly influenced by the chemical and physical properties of the chemicals, soil moisture, soil effective diffusion coefficients and geological settings.",
author = "Escobar, {Elsy A.} and Paul Dahlen and Johnson, {Paul C.}",
year = "2010",
language = "English (US)",
isbn = "9781617821707",
volume = "1",
pages = "226--259",
booktitle = "Air and Waste Management Association - Vapor Intrusion 2010",

}

TY - GEN

T1 - Transport of petroleum hydrocarbon vapor components in the subsurface; a laboratory soil column study

AU - Escobar, Elsy A.

AU - Dahlen, Paul

AU - Johnson, Paul C.

PY - 2010

Y1 - 2010

N2 - The diffusive transport of volatile organic compounds (VOCs) in the subsurface at petroleum spill sites can significantly affect vapor migration from sources to buildings and ground surface. Thus, knowledge of compound-specific vapor transport and bio-attenuation is of great interests to those who must identify risks and make corrective action decisions for petroleum spill sites. In this work, the vapor transport of individual compounds in complex petroleum vapor mixtures is being studied for idealized lithologies in 2-m (6-ft) tall laboratory soil columns. Six columns, representing different geological settings were prepared using 40-60 mesh sand (medium grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source is composed by twelve petroleum hydrocarbons that typify weathered gasoline. The liquid hydrocarbon mixture is placed in a chamber at the bottom of each column, and the vapors are allowed to diffuse upward through the soil to a chamber at the top of the columns, which is swept with humidified gas. The contaminant source vapor concentration is maintained constant throughout the experimental period by periodic replacement of the liquid. The experiment is conducted for two cases: i) anaerobic conditions, in which the sweep gas at the top of the column is nitrogen and no biodegradation is expected to occur; and ii) aerobic conditions; in which, air is the sweep gas; this phase will performed in the near future. Soil diffusion coefficients, and oxygen, carbon dioxide and hydrocarbon vapor concentration of each chemical are monitored over time in the column and the effluent sweep gas. The data allow determination of compound-specific flux and times for steady profiles to be achieved. The anaerobic phase of the experiment is ongoing. Results show that vapor transport is highly influenced by the chemical and physical properties of the chemicals, soil moisture, soil effective diffusion coefficients and geological settings.

AB - The diffusive transport of volatile organic compounds (VOCs) in the subsurface at petroleum spill sites can significantly affect vapor migration from sources to buildings and ground surface. Thus, knowledge of compound-specific vapor transport and bio-attenuation is of great interests to those who must identify risks and make corrective action decisions for petroleum spill sites. In this work, the vapor transport of individual compounds in complex petroleum vapor mixtures is being studied for idealized lithologies in 2-m (6-ft) tall laboratory soil columns. Six columns, representing different geological settings were prepared using 40-60 mesh sand (medium grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source is composed by twelve petroleum hydrocarbons that typify weathered gasoline. The liquid hydrocarbon mixture is placed in a chamber at the bottom of each column, and the vapors are allowed to diffuse upward through the soil to a chamber at the top of the columns, which is swept with humidified gas. The contaminant source vapor concentration is maintained constant throughout the experimental period by periodic replacement of the liquid. The experiment is conducted for two cases: i) anaerobic conditions, in which the sweep gas at the top of the column is nitrogen and no biodegradation is expected to occur; and ii) aerobic conditions; in which, air is the sweep gas; this phase will performed in the near future. Soil diffusion coefficients, and oxygen, carbon dioxide and hydrocarbon vapor concentration of each chemical are monitored over time in the column and the effluent sweep gas. The data allow determination of compound-specific flux and times for steady profiles to be achieved. The anaerobic phase of the experiment is ongoing. Results show that vapor transport is highly influenced by the chemical and physical properties of the chemicals, soil moisture, soil effective diffusion coefficients and geological settings.

UR - http://www.scopus.com/inward/record.url?scp=79953093703&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953093703&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9781617821707

VL - 1

SP - 226

EP - 259

BT - Air and Waste Management Association - Vapor Intrusion 2010

ER -