Abstract

Recent years have witnessed the prevalence of networked data in various domains. Among them, a large number of networks are not only topologically structured but also have a rich set of features on nodes. These node features are usually of high dimensionality with noisy, irrelevant and redundant information, which may impede the performance of other learning tasks. Feature selection is useful to alleviate these critical issues. Nonetheless, a vast majority of existing feature selection algorithms are predominantly designed in a static setting. In reality, real-world networks are naturally dynamic, characterized by both topology and content changes. It is desirable to capture these changes to find relevant features tightly hinged with network structure continuously, which is of fundamental importance for many applications such as disaster relief and viral marketing. In this paper, we study a novel problem of time-evolving feature selection for dynamic networks in an unsupervised scenario. Specifically, we propose a TeFS framework by leveraging the temporal evolution property of dynamic networks to update the feature selection results incrementally. Experimental results show the superiority of TeFS over the state-of-The-Art batch-mode unsupervised feature selection algorithms.

Original languageEnglish (US)
Title of host publicationProceedings - 16th IEEE International Conference on Data Mining, ICDM 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1003-1008
Number of pages6
ISBN (Electronic)9781509054725
DOIs
StatePublished - Jan 31 2017
Event16th IEEE International Conference on Data Mining, ICDM 2016 - Barcelona, Catalonia, Spain
Duration: Dec 12 2016Dec 15 2016

Other

Other16th IEEE International Conference on Data Mining, ICDM 2016
CountrySpain
CityBarcelona, Catalonia
Period12/12/1612/15/16

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Toward time-evolving feature selection on dynamic networks'. Together they form a unique fingerprint.

Cite this