Abstract
A major challenge in cyber-threat analysis is combining information from different sources to find the person or the group responsible for the cyber-attack. It is one of the most important technical and policy challenges in cyber-security. The lack of ground truth for an individual responsible for an attack has limited previous studies. In this paper, we overcome this limitation by building a dataset from the capture-the-flag event held at DEFCON, and propose an argumentation model based on a formal reasoning framework called DeLP (Defeasible Logic Programming) designed to aid an analyst in attributing a cyber-attack to an attacker. We build argumentation-based models from latent variables computed from the dataset to reduce the search space of culprits (attackers) that an analyst can use to identify the attacker. We show that reducing the search space in this manner significantly improves the performance of classification-based approaches to cyber-attribution.
Original language | English (US) |
---|---|
Title of host publication | WS-16-01 |
Subtitle of host publication | Artificial Intelligence Applied to Assistive Technologies and Smart Environments; WS-16-02: AI, Ethics, and Society; WS-16-03: Artificial Intelligence for Cyber Security; WS-16-04: Artificial Intelligence for Smart Grids and Smart Buildings; WS-16-05: Beyond NP; WS-16-06: Computer Poker and Imperfect Information Games; WS-16-07: Declarative Learning Based Programming; WS-16-08: Expanding the Boundaries of Health Informatics Using AI; WS-16-09: Incentives and Trust in Electronic Communities; WS-16-10: Knowledge Extraction from Text; WS-16-11: Multiagent Interaction without Prior Coordination; WS-16-12: Planning for Hybrid Systems; WS-16-13: Scholarly Big Data: AI Perspectives, Challenges, and Ideas; WS-16-14: Symbiotic Cognitive Systems; WS-16-15: World Wide Web and Population Health Intelligence |
Publisher | AI Access Foundation |
Pages | 177-184 |
Number of pages | 8 |
Volume | WS-16-01 - WS-16-15 |
ISBN (Electronic) | 9781577357599 |
State | Published - 2016 |
Event | 30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States Duration: Feb 12 2016 → Feb 17 2016 |
Other
Other | 30th AAAI Conference on Artificial Intelligence, AAAI 2016 |
---|---|
Country/Territory | United States |
City | Phoenix |
Period | 2/12/16 → 2/17/16 |
ASJC Scopus subject areas
- Engineering(all)