The Social consequences and mechanisms of personality: How to analyse longitudinal data from individual, dyadic, round-robin and network designs

Steffen Nestler, Kevin Grimm, Felix D. Schönbrodt

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

There is a growing interest among personality psychologists in the processes underlying the social consequences of personality. To adequately tackle this issue, complex designs and sophisticated mathematical models must be employed. In this article, we describe established and novel statistical approaches to examine social consequences of personality for individual, dyadic and group (round-robin and network) data. Our overview includes response surface analysis (RSA), autoregressive path models and latent growth curve models for individual data; actor-partner interdependence models and dyadic RSAs for dyadic data; and social relations and social network analysis for round-robin and network data. Altogether, our goal is to provide an overview of various analytical approaches, the situations in which each can be employed and a first impression about how to interpret their results. Three demo data sets and scripts show how to implement the approaches in R.

Original languageEnglish (US)
Pages (from-to)272-295
Number of pages24
JournalEuropean Journal of Personality
Volume29
Issue number2
DOIs
Publication statusPublished - Mar 1 2015

    Fingerprint

Keywords

  • Dyadic data
  • Longitudinal data analysis
  • Mediation
  • Response surface analysis
  • Social network analysis
  • Social relations model

ASJC Scopus subject areas

  • Social Psychology

Cite this