The glass transition of water, based on hyperquenching experiments

V. Velikov, S. Borick, Charles Angell

Research output: Contribution to journalArticlepeer-review

305 Scopus citations

Abstract

The glass transition temperature (Tg) in water is still uncertain, with conflicting values reported in the literature. As with other hyperquenched glasses, water exhibits a large relaxation exotherm on reheating at the normal rate of 10 kelvin (K) per minute. This release of heat indicates the transformation of a high enthalpy state to a lower one found in slow-cooled glasses. When the exotherm temperature is scaled by Tg, the good glass-formers show a common pattern. However, for hyperquenched water, when this analysis is performed using the commonly accepted Tg = 136 K, its behavior appears completely different, but this should not be the case because enthalpy relaxation is fundamental to the calorimetric glass transition. With Tg = 165 ± 5 K, normal behavior is restored in comparison with other hyperquenched glasses and with the binary solution behavior of network-former systems (H2O, ZnCl2, or BeF2 plus asecond component). This revised value has relevance to the understanding of waterbiomolecule interactions.

Original languageEnglish (US)
Pages (from-to)2335-2338
Number of pages4
JournalScience
Volume294
Issue number5550
DOIs
StatePublished - Dec 14 2001

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'The glass transition of water, based on hyperquenching experiments'. Together they form a unique fingerprint.

Cite this