The evolutionary scaling of cellular traits imposed by the drift barrier

Research output: Contribution to journalArticle

Abstract

Owing to internal homeostatic mechanisms, cellular traits may experience long periods of stable selective pressures, during which the stochastic forces of drift and mutation conspire to generate variation. However, even in the face of invariant selection, the drift barrier defined by the genetic effective population size, which is negatively associated with organism size, can have a substantial influence on the location and dispersion of the longterm steady-state distribution of mean phenotypes. In addition, for multilocus traits, the multiplicity of alternative, functionally equivalent states can draw mean phenotypes away from selective optima, even in the absence of mutation bias. Using a framework for traits with an additive genetic basis, it is shown that 1) optimal phenotypic states may be only rarely achieved; 2) gradients of mean phenotypes with respect to organism size (i.e., allometric relationships) are likely to be molded by differences in the power of random genetic drift across the tree of life; and 3) for any particular set of population-genetic conditions, significant variation in mean phenotypes may exist among lineages exposed to identical selection pressures. These results provide a potentially useful framework for understanding numerous aspects of cellular diversification and illustrate the risks of interpreting such variation in a purely adaptive framework.

Original languageEnglish (US)
Pages (from-to)10435-10444
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number19
DOIs
StatePublished - May 12 2020

Keywords

  • Cellular evolution
  • Evolutionary theory
  • Mutation bias
  • Optimal phenotype
  • Random genetic drift

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'The evolutionary scaling of cellular traits imposed by the drift barrier'. Together they form a unique fingerprint.

  • Cite this