The contribution of large scale structures in the power generation of finite scale wind farms using large eddy simulation

Yulia Peet, Tanmoy Chatterjee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The large scale organizations in the flow around the finite scale wind farms that contribute to the turbine power, have been studied in the current paper. The study has been carried out using Large Eddy Simulation (LES) with near wall modelling, and the turbine forces are modelled using the actuator line model. Proper orthogonal decomposition (POD) has been used as a tool of analysis to understand the large scale features contributing to the power generation by wind turbines in different rows of a wind farm. The POD modes reveal the existence of energetic flow features significantly larger than the turbine rotor diameter contributing to the flux of the mean kinetic energy (MKE). Thes fluxes play an instrumental role in power generation as also observed in the previous literature. New insights on the flow structures around the wind farm have been obtained which opens up further research directions to understand the localized transfer of the MKE flux.

Original languageEnglish (US)
Title of host publication10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017
PublisherInternational Symposium on Turbulence and Shear Flow Phenomena, TSFP10
Volume1
ISBN (Electronic)9780000000002
StatePublished - 2017
Event10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017 - Chicago, United States
Duration: Jul 6 2017Jul 9 2017

Other

Other10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017
CountryUnited States
CityChicago
Period7/6/177/9/17

ASJC Scopus subject areas

  • Atmospheric Science
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'The contribution of large scale structures in the power generation of finite scale wind farms using large eddy simulation'. Together they form a unique fingerprint.

Cite this