Abstract
Polydimethylsiloxane (PDMS) is commonly used in research for microfluidic devices and for making elastomeric stamps for soft lithography. Its biocompatibility and nontoxicitiy also allow it to be used in personal care, food, and medical products. Herein we report a phenomenon observed when patch clamp, a technique normally used to study biological ion channels, is performed on both grooved and planar PDMS surfaces, resulting in stochastic current fluctuations that are due to a nanopore being formed at the interface of the PDMS and glass surfaces and being randomly blocked. Deformable pores between 1.9 ± 0.7 and 7.4 ± 2.1 nm in diameter, depending on the calculation method, form upon patching to the surface. Coulter blocking and nanoprecipitation are ruled out, and we instead propose a mechanism of stochastic current fluctuations arising from transitions between vapor and liquid phases, consistent with similar observations and theory from statistical mechanics literature. Interestingly, we find that [Ru(bpy)3] 2+, a common probe molecule employed in nanopore research, physisorbs inside these hydrophobic nanopores blocking all ionic current flow at concentrations higher than 1 × 10-4 M, despite the considerably larger pore diameter relative to the molecule. Patch clamp methods are promising for the study of stochastic current fluctuations and other transport phenomenon in synthetic nanopore systems.
Original language | English (US) |
---|---|
Pages (from-to) | 9641-9651 |
Number of pages | 11 |
Journal | Journal of Physical Chemistry C |
Volume | 117 |
Issue number | 19 |
DOIs | |
State | Published - May 16 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films