Spatiotemporal Modeling of Correlated Small-Area Outcomes: Analyzing the Shared and Type-Specific Patterns of Crime and Disorder

Matthew Quick, Guangquan Li, Jane Law

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This research applies a Bayesian multivariate modeling approach to analyze the spatiotemporal patterns of physical disorder, social disorder, property crime, and violent crime at the small-area scale. Despite crime and disorder exhibiting similar spatiotemporal patterns, as hypothesized by broken windows and collective efficacy theories, past studies often analyze a single outcome and overlook the correlation structures between multiple crime and disorder types. Accounting for five covariates, the best-fitting model partitions the residual risk of each crime and disorder type into one spatial shared component, one temporal shared component, and type-specific spatial, temporal, and space–time components. The shared components capture the underlying spatial pattern and time trend common to all types of crime and disorder. Results show that population size, residential mobility, and the central business district are positively associated with all outcomes. The spatial shared component is found to explain the largest proportion of residual variability for all types of crime and disorder. Spatiotemporal hotspots of crime and disorder are examined to contextualize broken windows theory. Applications of multivariate spatiotemporal modeling with shared components to ecological crime theories and crime prevention policy are discussed.

Original languageEnglish (US)
Pages (from-to)221-248
Number of pages28
JournalGeographical Analysis
Volume51
Issue number2
DOIs
StatePublished - Apr 2019
Externally publishedYes

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Spatiotemporal Modeling of Correlated Small-Area Outcomes: Analyzing the Shared and Type-Specific Patterns of Crime and Disorder'. Together they form a unique fingerprint.

Cite this