Abstract
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Original language | English (US) |
---|---|
Pages (from-to) | 78-82 |
Number of pages | 5 |
Journal | Nature |
Volume | 470 |
Issue number | 7332 |
DOIs | |
State | Published - Feb 3 2011 |
Fingerprint
ASJC Scopus subject areas
- General
Cite this
Single mimivirus particles intercepted and imaged with an X-ray laser. / Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R N C; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; Deponte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Sǎa; Barthelmess, Miriam; Spence, John; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai Uwe; Andritschke, Robert; Schröter, Claus Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos.
In: Nature, Vol. 470, No. 7332, 03.02.2011, p. 78-82.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Single mimivirus particles intercepted and imaged with an X-ray laser
AU - Seibert, M. Marvin
AU - Ekeberg, Tomas
AU - Maia, Filipe R N C
AU - Svenda, Martin
AU - Andreasson, Jakob
AU - Jönsson, Olof
AU - Odić, Duško
AU - Iwan, Bianca
AU - Rocker, Andrea
AU - Westphal, Daniel
AU - Hantke, Max
AU - Deponte, Daniel P.
AU - Barty, Anton
AU - Schulz, Joachim
AU - Gumprecht, Lars
AU - Coppola, Nicola
AU - Aquila, Andrew
AU - Liang, Mengning
AU - White, Thomas A.
AU - Martin, Andrew
AU - Caleman, Carl
AU - Stern, Stephan
AU - Abergel, Chantal
AU - Seltzer, Virginie
AU - Claverie, Jean Michel
AU - Bostedt, Christoph
AU - Bozek, John D.
AU - Boutet, Sébastien
AU - Miahnahri, A. Alan
AU - Messerschmidt, Marc
AU - Krzywinski, Jacek
AU - Williams, Garth
AU - Hodgson, Keith O.
AU - Bogan, Michael J.
AU - Hampton, Christina Y.
AU - Sierra, Raymond G.
AU - Starodub, Dmitri
AU - Andersson, Inger
AU - Bajt, Sǎa
AU - Barthelmess, Miriam
AU - Spence, John
AU - Fromme, Petra
AU - Weierstall, Uwe
AU - Kirian, Richard
AU - Hunter, Mark
AU - Doak, R. Bruce
AU - Marchesini, Stefano
AU - Hau-Riege, Stefan P.
AU - Frank, Matthias
AU - Shoeman, Robert L.
AU - Lomb, Lukas
AU - Epp, Sascha W.
AU - Hartmann, Robert
AU - Rolles, Daniel
AU - Rudenko, Artem
AU - Schmidt, Carlo
AU - Foucar, Lutz
AU - Kimmel, Nils
AU - Holl, Peter
AU - Rudek, Benedikt
AU - Erk, Benjamin
AU - Hömke, André
AU - Reich, Christian
AU - Pietschner, Daniel
AU - Weidenspointner, Georg
AU - Strüder, Lothar
AU - Hauser, Günter
AU - Gorke, Hubert
AU - Ullrich, Joachim
AU - Schlichting, Ilme
AU - Herrmann, Sven
AU - Schaller, Gerhard
AU - Schopper, Florian
AU - Soltau, Heike
AU - Kühnel, Kai Uwe
AU - Andritschke, Robert
AU - Schröter, Claus Dieter
AU - Krasniqi, Faton
AU - Bott, Mario
AU - Schorb, Sebastian
AU - Rupp, Daniela
AU - Adolph, Marcus
AU - Gorkhover, Tais
AU - Hirsemann, Helmut
AU - Potdevin, Guillaume
AU - Graafsma, Heinz
AU - Nilsson, Björn
AU - Chapman, Henry N.
AU - Hajdu, Janos
PY - 2011/2/3
Y1 - 2011/2/3
N2 - X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
AB - X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
UR - http://www.scopus.com/inward/record.url?scp=79551667263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551667263&partnerID=8YFLogxK
U2 - 10.1038/nature09748
DO - 10.1038/nature09748
M3 - Article
C2 - 21293374
AN - SCOPUS:79551667263
VL - 470
SP - 78
EP - 82
JO - Nature
JF - Nature
SN - 0028-0836
IS - 7332
ER -