Similar-sized collisions and the diversity of planets

Erik Asphaug

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

It is assumed in models of terrestrial planet formation that colliding bodies simply merge. From this the dynamical and chemical properties (and habitability) of finished planets have been computed, and our own and other planetary systems compared to the results of these calculations. But efficient mergers may be exceptions to the rule, for the similar-sized collisions (SSCs) that dominate terrestrial planet formation, simply because moderately off-axis SSCs are grazing; their centers of mass overshoot. In a "hit and run" collision the smaller body narrowly avoids accretion and is profoundly deformed and altered by gravitational and mechanical torques, shears, tides, and impact shocks. Consequences to the larger body are minor in inverse proportion to its relative mass. Over the possible impact angles, hit-and-run is the most common outcome for impact velocities vimp between ~;1.2 and 2.7 times the mutual escape velocity vesc between similar-sized planets. Slower collisions are usually accretionary, and faster SSCs are erosive or disruptive, and thus the prevalence of hit-and-run is sensitive to the velocity regime during epochs of accretion. Consequences of hit-and-run are diverse. If barely grazing, the target strips much of the exterior from the impactor-any atmosphere and ocean, much of the crust-and unloads its deep interior from hydrostatic pressure for about an hour. If closer to head-on (~;30-45°) a hit-and-run can cause the impactor core to plow through the target mantle, graze the target core, and emerge as a chain of diverse new planetoids on escaping trajectories. A hypothesis is developed for the diversity of next-largest bodies (NLBs) in an accreting planetary system-the bodies from which asteroids and meteorites derive. Because nearly all the NLBs eventually get accreted by the largest (Venus and Earth in our terrestrial system) or by the Sun, or otherwise lost, those we see today have survived the attrition of merger, evolving with each close call towards denser and volatile-poor bulk composition. This hypothesis would explain the observed density diversity of differentiated asteroids, and of dwarf planets beyond Neptune, in terms of episodic global-scale losses of rock or ice mantles, respectively. In an event similar to the Moon-forming giant impact, Mercury might have lost its original crust and upper mantle when it emerged from a modest velocity hit and run collision with a larger embryo or planet. In systems with super-Earths, profound diversity and diminished habitability is predicted among the unaccreted Earth-mass planets, as many of these will have be stripped of their atmospheres, oceans and crusts.

Original languageEnglish (US)
Pages (from-to)199-219
Number of pages21
JournalChemie der Erde - Geochemistry
Volume70
Issue number3
DOIs
StatePublished - 2010
Externally publishedYes

Fingerprint

Planets
planets
planet
collision
collisions
habitability
crusts
Earth mantle
impactors
terrestrial planets
planetary systems
Asteroids
grazing
asteroids
Earth (planet)
crust
oceans
asteroid
merger
dwarf planets

Keywords

  • Accretion
  • Collisions
  • Impact
  • Planet Formation
  • Planets

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Similar-sized collisions and the diversity of planets. / Asphaug, Erik.

In: Chemie der Erde - Geochemistry, Vol. 70, No. 3, 2010, p. 199-219.

Research output: Contribution to journalArticle

Asphaug, Erik. / Similar-sized collisions and the diversity of planets. In: Chemie der Erde - Geochemistry. 2010 ; Vol. 70, No. 3. pp. 199-219.
@article{b90139d974954f2f86a49d6b5d5ea3ee,
title = "Similar-sized collisions and the diversity of planets",
abstract = "It is assumed in models of terrestrial planet formation that colliding bodies simply merge. From this the dynamical and chemical properties (and habitability) of finished planets have been computed, and our own and other planetary systems compared to the results of these calculations. But efficient mergers may be exceptions to the rule, for the similar-sized collisions (SSCs) that dominate terrestrial planet formation, simply because moderately off-axis SSCs are grazing; their centers of mass overshoot. In a {"}hit and run{"} collision the smaller body narrowly avoids accretion and is profoundly deformed and altered by gravitational and mechanical torques, shears, tides, and impact shocks. Consequences to the larger body are minor in inverse proportion to its relative mass. Over the possible impact angles, hit-and-run is the most common outcome for impact velocities vimp between ~;1.2 and 2.7 times the mutual escape velocity vesc between similar-sized planets. Slower collisions are usually accretionary, and faster SSCs are erosive or disruptive, and thus the prevalence of hit-and-run is sensitive to the velocity regime during epochs of accretion. Consequences of hit-and-run are diverse. If barely grazing, the target strips much of the exterior from the impactor-any atmosphere and ocean, much of the crust-and unloads its deep interior from hydrostatic pressure for about an hour. If closer to head-on (~;30-45°) a hit-and-run can cause the impactor core to plow through the target mantle, graze the target core, and emerge as a chain of diverse new planetoids on escaping trajectories. A hypothesis is developed for the diversity of next-largest bodies (NLBs) in an accreting planetary system-the bodies from which asteroids and meteorites derive. Because nearly all the NLBs eventually get accreted by the largest (Venus and Earth in our terrestrial system) or by the Sun, or otherwise lost, those we see today have survived the attrition of merger, evolving with each close call towards denser and volatile-poor bulk composition. This hypothesis would explain the observed density diversity of differentiated asteroids, and of dwarf planets beyond Neptune, in terms of episodic global-scale losses of rock or ice mantles, respectively. In an event similar to the Moon-forming giant impact, Mercury might have lost its original crust and upper mantle when it emerged from a modest velocity hit and run collision with a larger embryo or planet. In systems with super-Earths, profound diversity and diminished habitability is predicted among the unaccreted Earth-mass planets, as many of these will have be stripped of their atmospheres, oceans and crusts.",
keywords = "Accretion, Collisions, Impact, Planet Formation, Planets",
author = "Erik Asphaug",
year = "2010",
doi = "10.1016/j.chemer.2010.01.004",
language = "English (US)",
volume = "70",
pages = "199--219",
journal = "Chemie der Erde",
issn = "0009-2819",
publisher = "Urban und Fischer Verlag Jena",
number = "3",

}

TY - JOUR

T1 - Similar-sized collisions and the diversity of planets

AU - Asphaug, Erik

PY - 2010

Y1 - 2010

N2 - It is assumed in models of terrestrial planet formation that colliding bodies simply merge. From this the dynamical and chemical properties (and habitability) of finished planets have been computed, and our own and other planetary systems compared to the results of these calculations. But efficient mergers may be exceptions to the rule, for the similar-sized collisions (SSCs) that dominate terrestrial planet formation, simply because moderately off-axis SSCs are grazing; their centers of mass overshoot. In a "hit and run" collision the smaller body narrowly avoids accretion and is profoundly deformed and altered by gravitational and mechanical torques, shears, tides, and impact shocks. Consequences to the larger body are minor in inverse proportion to its relative mass. Over the possible impact angles, hit-and-run is the most common outcome for impact velocities vimp between ~;1.2 and 2.7 times the mutual escape velocity vesc between similar-sized planets. Slower collisions are usually accretionary, and faster SSCs are erosive or disruptive, and thus the prevalence of hit-and-run is sensitive to the velocity regime during epochs of accretion. Consequences of hit-and-run are diverse. If barely grazing, the target strips much of the exterior from the impactor-any atmosphere and ocean, much of the crust-and unloads its deep interior from hydrostatic pressure for about an hour. If closer to head-on (~;30-45°) a hit-and-run can cause the impactor core to plow through the target mantle, graze the target core, and emerge as a chain of diverse new planetoids on escaping trajectories. A hypothesis is developed for the diversity of next-largest bodies (NLBs) in an accreting planetary system-the bodies from which asteroids and meteorites derive. Because nearly all the NLBs eventually get accreted by the largest (Venus and Earth in our terrestrial system) or by the Sun, or otherwise lost, those we see today have survived the attrition of merger, evolving with each close call towards denser and volatile-poor bulk composition. This hypothesis would explain the observed density diversity of differentiated asteroids, and of dwarf planets beyond Neptune, in terms of episodic global-scale losses of rock or ice mantles, respectively. In an event similar to the Moon-forming giant impact, Mercury might have lost its original crust and upper mantle when it emerged from a modest velocity hit and run collision with a larger embryo or planet. In systems with super-Earths, profound diversity and diminished habitability is predicted among the unaccreted Earth-mass planets, as many of these will have be stripped of their atmospheres, oceans and crusts.

AB - It is assumed in models of terrestrial planet formation that colliding bodies simply merge. From this the dynamical and chemical properties (and habitability) of finished planets have been computed, and our own and other planetary systems compared to the results of these calculations. But efficient mergers may be exceptions to the rule, for the similar-sized collisions (SSCs) that dominate terrestrial planet formation, simply because moderately off-axis SSCs are grazing; their centers of mass overshoot. In a "hit and run" collision the smaller body narrowly avoids accretion and is profoundly deformed and altered by gravitational and mechanical torques, shears, tides, and impact shocks. Consequences to the larger body are minor in inverse proportion to its relative mass. Over the possible impact angles, hit-and-run is the most common outcome for impact velocities vimp between ~;1.2 and 2.7 times the mutual escape velocity vesc between similar-sized planets. Slower collisions are usually accretionary, and faster SSCs are erosive or disruptive, and thus the prevalence of hit-and-run is sensitive to the velocity regime during epochs of accretion. Consequences of hit-and-run are diverse. If barely grazing, the target strips much of the exterior from the impactor-any atmosphere and ocean, much of the crust-and unloads its deep interior from hydrostatic pressure for about an hour. If closer to head-on (~;30-45°) a hit-and-run can cause the impactor core to plow through the target mantle, graze the target core, and emerge as a chain of diverse new planetoids on escaping trajectories. A hypothesis is developed for the diversity of next-largest bodies (NLBs) in an accreting planetary system-the bodies from which asteroids and meteorites derive. Because nearly all the NLBs eventually get accreted by the largest (Venus and Earth in our terrestrial system) or by the Sun, or otherwise lost, those we see today have survived the attrition of merger, evolving with each close call towards denser and volatile-poor bulk composition. This hypothesis would explain the observed density diversity of differentiated asteroids, and of dwarf planets beyond Neptune, in terms of episodic global-scale losses of rock or ice mantles, respectively. In an event similar to the Moon-forming giant impact, Mercury might have lost its original crust and upper mantle when it emerged from a modest velocity hit and run collision with a larger embryo or planet. In systems with super-Earths, profound diversity and diminished habitability is predicted among the unaccreted Earth-mass planets, as many of these will have be stripped of their atmospheres, oceans and crusts.

KW - Accretion

KW - Collisions

KW - Impact

KW - Planet Formation

KW - Planets

UR - http://www.scopus.com/inward/record.url?scp=77955327105&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955327105&partnerID=8YFLogxK

U2 - 10.1016/j.chemer.2010.01.004

DO - 10.1016/j.chemer.2010.01.004

M3 - Article

VL - 70

SP - 199

EP - 219

JO - Chemie der Erde

JF - Chemie der Erde

SN - 0009-2819

IS - 3

ER -