Role of protein dynamics in guiding electron-transfer pathways in reaction centers from rhodobacter sphaeroides

Haiyu Wang, Yawei Hao, Ying Jiang, Su Lin, Neal Woodbury

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The role of protein dynamics in guiding multistep electron transfer is explored in the photosynthetic reaction center of Rhodobacter sphaeroides. The energetics of the charge-separated intermediates, P+B A- and P+HA- (P is the initial electron donor bacteriochlorophyll pair and BA and H A are early bacteriochlorophyll and bacteriopheophytin acceptors, respectively), were systematically varied in a series of mutants. A fast phase of P+HA- recombination was resolved that is very sensitive to driving force. Either increasing or decreasing the relative free energy of P+HA- resulted in a more prominent fast recombination component, and thus a decreased yield forward electron transfer. The fast phase apparently represents P+H A- charge recombination via an activated state, probably P+BA- (BA is situated between P and HA). In wild type, this activated state is largely inaccessible, presumably due to dynamic stabilization of P+HA - within the first 100 ps. In mutants that change the energetics, the rate of decay via the activated state accelerates and that pathway becomes significant. The dynamic stabilization of the protein makes it possible to achieve a nearly optimum environment of HA in wild type on two different time scales and for two rather different reactions. On the picosecond time scale, the energetics is nearly, though not perfectly, optimized for transfer between the excited state of P and HA. After dynamic stabilization of the state P+HA-, the environment is optimized to avoid rapid recombination of the charge-separated state and instead carry out forward electron transfer to the quinone with very high yield on the hundreds of picosecond time scale. Thus, by employing protein dynamics, the reaction center is able to optimize multiple reactions, on very different time scales involving the same reaction intermediate.

Original languageEnglish (US)
Pages (from-to)711-717
Number of pages7
JournalJournal of Physical Chemistry B
Volume116
Issue number1
DOIs
StatePublished - Jan 12 2012

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Role of protein dynamics in guiding electron-transfer pathways in reaction centers from rhodobacter sphaeroides'. Together they form a unique fingerprint.

Cite this