Robot learning manipulation action plans by "watching" unconstrained videos from the World Wide Web

Yezhou Yang, Yi Li, Cornelia Fermüller, Yiannis Aloimonos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

54 Scopus citations

Abstract

In order to advance action generation and creation in robots beyond simple learned schemas we need computational tools that allow us to automatically interpret and represent human actions. This paper presents a system that learns manipulation action plans by processing unconstrained videos from the World Wide Web. Its goal is to robustly generate the sequence of atomic actions of seen longer actions in video in order to acquire knowledge for robots. The lower level of the system consists of two convolutional neural network (CNN) based recognition modules, one for classifying the hand grasp type and the other for object recognition. The higher level is a probabilistic manipulation action grammar based parsing module that aims at generating visual sentences for robot manipulation. Experiments conducted on a publicly available unconstrained video dataset show that the system is able to learn manipulation actions by "watching" unconstrained videos with high accuracy.

Original languageEnglish (US)
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages3686-3692
Number of pages7
Volume5
ISBN (Electronic)9781577357032
StatePublished - Jun 1 2015
Externally publishedYes
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: Jan 25 2015Jan 30 2015

Other

Other29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
CountryUnited States
CityAustin
Period1/25/151/30/15

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Robot learning manipulation action plans by "watching" unconstrained videos from the World Wide Web'. Together they form a unique fingerprint.

  • Cite this

    Yang, Y., Li, Y., Fermüller, C., & Aloimonos, Y. (2015). Robot learning manipulation action plans by "watching" unconstrained videos from the World Wide Web. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 (Vol. 5, pp. 3686-3692). AI Access Foundation.