Revision of specification automata under quantitative preferences

Kangjin Kim, Georgios Fainekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

We study the problem of revising specifications with preferences for automata based control synthesis problems. In this class of revision problems, the user provides a numerical ranking of the desirability of the subgoals in their specifications. When the specification cannot be satisfied on the system, then our algorithms automatically revise the specification so that the least desirable user goals are removed from the specification. We propose two different versions of the revision problem with preferences. In the first version, the algorithm returns an exact solution while in the second version the algorithm is an approximation algorithm with non-constant approximation ratio. Finally, we demonstrate the scalability of our algorithms and we experimentally study the approximation ratio of the approximation algorithm on random problem instances.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5339-5344
Number of pages6
ISBN (Electronic)9781479936854, 9781479936854
DOIs
StatePublished - Sep 22 2014
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: May 31 2014Jun 7 2014

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period5/31/146/7/14

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Revision of specification automata under quantitative preferences'. Together they form a unique fingerprint.

Cite this