Refined higher-order composite box beam theory

Thomas R. McCarthy, Aditi Chattopadhyay

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

A higher-order composite box beam theory is developed to model beams with arbitrary wall thicknesses. The theory, which is based on a refined displacement field, approximates the three-dimensional elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. Numerical results are presented for beams with varying wall thicknesses and aspect ratios. The static results are correlated with available experimental data and show excellent agreement. Dynamic results presented show the importance of including inplane and out-of-plane warping deformations in the formulation.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
PublisherAIAA
Pages1398-1408
Number of pages11
Volume3
StatePublished - 1996
EventProceedings of the 1996 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Part 4 (of 4) - Salt Lake City, UT, USA
Duration: Apr 15 1996Apr 17 1996

Other

OtherProceedings of the 1996 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Part 4 (of 4)
CitySalt Lake City, UT, USA
Period4/15/964/17/96

ASJC Scopus subject areas

  • Architecture

Fingerprint Dive into the research topics of 'Refined higher-order composite box beam theory'. Together they form a unique fingerprint.

Cite this