Random variability modeling and its impact on scaled CMOS circuits

Yun Ye, Samatha Gummalla, Chi Chao Wang, Chaitali Chakrabarti, Yu Cao

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Random variations have been regarded as one of the major barriers on CMOS scaling. Compact models that physically capture these effects are crucial to bridge the process technology with design optimization. In this paper, 3-D atomistic simulations are performed to investigate fundamental variations in a scaled CMOS device, including random dopant fluctuation (RDF), line-edge roughness (LER), and oxide thickness fluctuation (OTF). By understanding the underlying physics and analyzing simulation results, compact models for random threshold (Vth) variations are developed. The models are scalable with device specifications, enabling quantitative analysis of circuit performance variability in future technology nodes. Using representative circuits, such as the inverter chain and SRAM cell, key insights are extracted on the trend of variability, as well as the implications on robust design.

Original languageEnglish (US)
Pages (from-to)108-113
Number of pages6
JournalJournal of Computational Electronics
Volume9
Issue number3-4
DOIs
StatePublished - Dec 2010

Keywords

  • Atomistic simulation
  • Inverter
  • Line-edge roughness
  • Oxide thickness fluctuation
  • Predictive modeling
  • Random dopant fluctuation
  • SRAM performance variability
  • Threshold variation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Modeling and Simulation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Random variability modeling and its impact on scaled CMOS circuits'. Together they form a unique fingerprint.

Cite this