Predicting amplitude death with machine learning

Rui Xiao, Ling Wei Kong, Zhong Kui Sun, Ying Cheng Lai

Research output: Contribution to journalArticlepeer-review

Abstract

In nonlinear dynamics, a parameter drift can lead to a sudden and complete cessation of the oscillations of the state variables - the phenomenon of amplitude death. The underlying bifurcation is one at which the system settles into a steady state from chaotic or regular oscillations. As the normal functioning of many physical, biological, and physiological systems hinges on oscillations, amplitude death is undesired. To predict amplitude death in advance of its occurrence based solely on oscillatory time series collected while the system still functions normally is a challenge problem. We exploit machine learning to meet this challenge. In particular, we develop the scheme of "parameter-aware"reservoir computing, where training is conducted for a small number of bifurcation parameter values in the oscillatory regime to enable prediction upon a parameter drift into the regime of amplitude death. We demonstrate successful prediction of amplitude death for three prototypical dynamical systems in which the transition to death is preceded by either chaotic or regular oscillations. Because of the completely data-driven nature of the prediction framework, potential applications to real-world systems can be anticipated.

Original languageEnglish (US)
Article number014205
JournalPhysical Review E
Volume104
Issue number1
DOIs
StatePublished - Jul 2021

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Predicting amplitude death with machine learning'. Together they form a unique fingerprint.

Cite this