Plasmid-associated virulence of Salmonella typhimurium

P. A. Gulig, R. Curtiss

Research output: Contribution to journalArticle

240 Citations (Scopus)

Abstract

We investigated the role of the 100-kilobase (kb) plasmid of Salmonella typhimurium in the virulence of this organism for mice. Three strains, LT2-Z, SR-11, and SL1344, which possessed 100-kb plasmids with identical restriction enzyme digestion profiles, were cured of their respective 100-kb plasmids after Tnmini-tet was used to label plasmids. Curing wild-type virulent strains SR-11 and SL1344 raised peroral 50% lethal doses from 3 x 105 and 6 x 104 CFU, respectively, to greater than 108 CFU. Both wild-type strains had intraperitoneal 50% lethal doses of less than 50 CFU, whereas the intraperitoneal 50% lethal doses for cured SR-11 and SL1344 were less than 50 and 400 CFU, respectively. Reintroduction of the Tnmini-tet-labeled, 100-kb plasmid restored wild-type virulence. Invasion from Peyer's patches to mesenteric lymph nodes and spleens after peroral inoculation was the stage of pathogenesis most affected by curing S. typhimurium of the 100-kb plasmid. Wild-type S. typhimurium replicated in spleens of mice inoculated intravenously to a greater extent than did plasmid-cured derivatives. Wild-type and cured strains equally adhered to and invaded Henle-407, HEp-2, and CHO cells; furthermore, the presence of the 100-kb plasmid was not necessary for replication of S. typhimurium within CHO cells. The 100-kb plasmid had no effect on phagocytosis and killing of S. typhimurium by murine peritoneal macrophages in vitro and in vivo. Similarly, wild-type and plasmid-cured strains were resistant to killing by 90% normal human, rabbit, and guinea pig sera. All wild-type and plasmid-cured S. typhimurium strains possessed complete lipopolysaccharide, as determined by silver staining solubilized cells in sodium dodecyl sulfate-polyacrylamide gels. We have confirmed the role of the 100-kb plasmid of S. typhimurium in virulence primarily in invasion to mesenteric lymph nodes and spleens after peroral inoculation of mice. Involvement of the 100-kb plasmid in infection of mesenteric lymph nodes and spleens suggests a role for the plasmid in the complex interaction of S. typhimurium with cells of the reticuloendothelial system.

Original languageEnglish (US)
Pages (from-to)2891-2901
Number of pages11
JournalInfection and Immunity
Volume55
Issue number12
StatePublished - 1987
Externally publishedYes

Fingerprint

Salmonella typhimurium
Virulence
Plasmids
Lethal Dose 50
Spleen
CHO Cells
Lymph Nodes
Peyer's Patches
Mononuclear Phagocyte System
Silver Staining
Peritoneal Macrophages
Phagocytosis
Sodium Dodecyl Sulfate
Lipopolysaccharides
Digestion
Guinea Pigs

ASJC Scopus subject areas

  • Immunology

Cite this

Gulig, P. A., & Curtiss, R. (1987). Plasmid-associated virulence of Salmonella typhimurium. Infection and Immunity, 55(12), 2891-2901.

Plasmid-associated virulence of Salmonella typhimurium. / Gulig, P. A.; Curtiss, R.

In: Infection and Immunity, Vol. 55, No. 12, 1987, p. 2891-2901.

Research output: Contribution to journalArticle

Gulig, PA & Curtiss, R 1987, 'Plasmid-associated virulence of Salmonella typhimurium', Infection and Immunity, vol. 55, no. 12, pp. 2891-2901.
Gulig, P. A. ; Curtiss, R. / Plasmid-associated virulence of Salmonella typhimurium. In: Infection and Immunity. 1987 ; Vol. 55, No. 12. pp. 2891-2901.
@article{6241d7da16c44c2585676a7f291e97a7,
title = "Plasmid-associated virulence of Salmonella typhimurium",
abstract = "We investigated the role of the 100-kilobase (kb) plasmid of Salmonella typhimurium in the virulence of this organism for mice. Three strains, LT2-Z, SR-11, and SL1344, which possessed 100-kb plasmids with identical restriction enzyme digestion profiles, were cured of their respective 100-kb plasmids after Tnmini-tet was used to label plasmids. Curing wild-type virulent strains SR-11 and SL1344 raised peroral 50{\%} lethal doses from 3 x 105 and 6 x 104 CFU, respectively, to greater than 108 CFU. Both wild-type strains had intraperitoneal 50{\%} lethal doses of less than 50 CFU, whereas the intraperitoneal 50{\%} lethal doses for cured SR-11 and SL1344 were less than 50 and 400 CFU, respectively. Reintroduction of the Tnmini-tet-labeled, 100-kb plasmid restored wild-type virulence. Invasion from Peyer's patches to mesenteric lymph nodes and spleens after peroral inoculation was the stage of pathogenesis most affected by curing S. typhimurium of the 100-kb plasmid. Wild-type S. typhimurium replicated in spleens of mice inoculated intravenously to a greater extent than did plasmid-cured derivatives. Wild-type and cured strains equally adhered to and invaded Henle-407, HEp-2, and CHO cells; furthermore, the presence of the 100-kb plasmid was not necessary for replication of S. typhimurium within CHO cells. The 100-kb plasmid had no effect on phagocytosis and killing of S. typhimurium by murine peritoneal macrophages in vitro and in vivo. Similarly, wild-type and plasmid-cured strains were resistant to killing by 90{\%} normal human, rabbit, and guinea pig sera. All wild-type and plasmid-cured S. typhimurium strains possessed complete lipopolysaccharide, as determined by silver staining solubilized cells in sodium dodecyl sulfate-polyacrylamide gels. We have confirmed the role of the 100-kb plasmid of S. typhimurium in virulence primarily in invasion to mesenteric lymph nodes and spleens after peroral inoculation of mice. Involvement of the 100-kb plasmid in infection of mesenteric lymph nodes and spleens suggests a role for the plasmid in the complex interaction of S. typhimurium with cells of the reticuloendothelial system.",
author = "Gulig, {P. A.} and R. Curtiss",
year = "1987",
language = "English (US)",
volume = "55",
pages = "2891--2901",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - Plasmid-associated virulence of Salmonella typhimurium

AU - Gulig, P. A.

AU - Curtiss, R.

PY - 1987

Y1 - 1987

N2 - We investigated the role of the 100-kilobase (kb) plasmid of Salmonella typhimurium in the virulence of this organism for mice. Three strains, LT2-Z, SR-11, and SL1344, which possessed 100-kb plasmids with identical restriction enzyme digestion profiles, were cured of their respective 100-kb plasmids after Tnmini-tet was used to label plasmids. Curing wild-type virulent strains SR-11 and SL1344 raised peroral 50% lethal doses from 3 x 105 and 6 x 104 CFU, respectively, to greater than 108 CFU. Both wild-type strains had intraperitoneal 50% lethal doses of less than 50 CFU, whereas the intraperitoneal 50% lethal doses for cured SR-11 and SL1344 were less than 50 and 400 CFU, respectively. Reintroduction of the Tnmini-tet-labeled, 100-kb plasmid restored wild-type virulence. Invasion from Peyer's patches to mesenteric lymph nodes and spleens after peroral inoculation was the stage of pathogenesis most affected by curing S. typhimurium of the 100-kb plasmid. Wild-type S. typhimurium replicated in spleens of mice inoculated intravenously to a greater extent than did plasmid-cured derivatives. Wild-type and cured strains equally adhered to and invaded Henle-407, HEp-2, and CHO cells; furthermore, the presence of the 100-kb plasmid was not necessary for replication of S. typhimurium within CHO cells. The 100-kb plasmid had no effect on phagocytosis and killing of S. typhimurium by murine peritoneal macrophages in vitro and in vivo. Similarly, wild-type and plasmid-cured strains were resistant to killing by 90% normal human, rabbit, and guinea pig sera. All wild-type and plasmid-cured S. typhimurium strains possessed complete lipopolysaccharide, as determined by silver staining solubilized cells in sodium dodecyl sulfate-polyacrylamide gels. We have confirmed the role of the 100-kb plasmid of S. typhimurium in virulence primarily in invasion to mesenteric lymph nodes and spleens after peroral inoculation of mice. Involvement of the 100-kb plasmid in infection of mesenteric lymph nodes and spleens suggests a role for the plasmid in the complex interaction of S. typhimurium with cells of the reticuloendothelial system.

AB - We investigated the role of the 100-kilobase (kb) plasmid of Salmonella typhimurium in the virulence of this organism for mice. Three strains, LT2-Z, SR-11, and SL1344, which possessed 100-kb plasmids with identical restriction enzyme digestion profiles, were cured of their respective 100-kb plasmids after Tnmini-tet was used to label plasmids. Curing wild-type virulent strains SR-11 and SL1344 raised peroral 50% lethal doses from 3 x 105 and 6 x 104 CFU, respectively, to greater than 108 CFU. Both wild-type strains had intraperitoneal 50% lethal doses of less than 50 CFU, whereas the intraperitoneal 50% lethal doses for cured SR-11 and SL1344 were less than 50 and 400 CFU, respectively. Reintroduction of the Tnmini-tet-labeled, 100-kb plasmid restored wild-type virulence. Invasion from Peyer's patches to mesenteric lymph nodes and spleens after peroral inoculation was the stage of pathogenesis most affected by curing S. typhimurium of the 100-kb plasmid. Wild-type S. typhimurium replicated in spleens of mice inoculated intravenously to a greater extent than did plasmid-cured derivatives. Wild-type and cured strains equally adhered to and invaded Henle-407, HEp-2, and CHO cells; furthermore, the presence of the 100-kb plasmid was not necessary for replication of S. typhimurium within CHO cells. The 100-kb plasmid had no effect on phagocytosis and killing of S. typhimurium by murine peritoneal macrophages in vitro and in vivo. Similarly, wild-type and plasmid-cured strains were resistant to killing by 90% normal human, rabbit, and guinea pig sera. All wild-type and plasmid-cured S. typhimurium strains possessed complete lipopolysaccharide, as determined by silver staining solubilized cells in sodium dodecyl sulfate-polyacrylamide gels. We have confirmed the role of the 100-kb plasmid of S. typhimurium in virulence primarily in invasion to mesenteric lymph nodes and spleens after peroral inoculation of mice. Involvement of the 100-kb plasmid in infection of mesenteric lymph nodes and spleens suggests a role for the plasmid in the complex interaction of S. typhimurium with cells of the reticuloendothelial system.

UR - http://www.scopus.com/inward/record.url?scp=0023510121&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023510121&partnerID=8YFLogxK

M3 - Article

VL - 55

SP - 2891

EP - 2901

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 12

ER -