Periodic solutions to non-autonomous second-order systems

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We establish the existence of periodic solution of a class of non-autonomous second-order systems, over(x, ̈) + μ x + V (t, x) = 0, where V (t, x) = (v1 (t, x), ..., vn (t, x)), if lim| x | → ∞ frac(vi (t, x), | x |) = 0, i = 1, ..., n, uniformly in t and V is bounded below or above for appropriate ranges of μ.

Original languageEnglish (US)
Pages (from-to)1271-1275
Number of pages5
JournalNonlinear Analysis, Theory, Methods and Applications
Volume71
Issue number3-4
DOIs
StatePublished - Aug 1 2009

Fingerprint

Nonautonomous Systems
Second-order Systems
Periodic Solution
Range of data
Class

Keywords

  • Cone
  • Fixed point theorem
  • Non-autonomous system
  • Periodic solutions

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Cite this

Periodic solutions to non-autonomous second-order systems. / Wang, Haiyan.

In: Nonlinear Analysis, Theory, Methods and Applications, Vol. 71, No. 3-4, 01.08.2009, p. 1271-1275.

Research output: Contribution to journalArticle

@article{912972cd1c3d4d539e0b2b4b72332e1e,
title = "Periodic solutions to non-autonomous second-order systems",
abstract = "We establish the existence of periodic solution of a class of non-autonomous second-order systems, over(x, ̈) + μ x + V (t, x) = 0, where V (t, x) = (v1 (t, x), ..., vn (t, x)), if lim| x | → ∞ frac(vi (t, x), | x |) = 0, i = 1, ..., n, uniformly in t and V is bounded below or above for appropriate ranges of μ.",
keywords = "Cone, Fixed point theorem, Non-autonomous system, Periodic solutions",
author = "Haiyan Wang",
year = "2009",
month = "8",
day = "1",
doi = "10.1016/j.na.2008.11.079",
language = "English (US)",
volume = "71",
pages = "1271--1275",
journal = "Nonlinear Analysis, Theory, Methods and Applications",
issn = "0362-546X",
publisher = "Elsevier Limited",
number = "3-4",

}

TY - JOUR

T1 - Periodic solutions to non-autonomous second-order systems

AU - Wang, Haiyan

PY - 2009/8/1

Y1 - 2009/8/1

N2 - We establish the existence of periodic solution of a class of non-autonomous second-order systems, over(x, ̈) + μ x + V (t, x) = 0, where V (t, x) = (v1 (t, x), ..., vn (t, x)), if lim| x | → ∞ frac(vi (t, x), | x |) = 0, i = 1, ..., n, uniformly in t and V is bounded below or above for appropriate ranges of μ.

AB - We establish the existence of periodic solution of a class of non-autonomous second-order systems, over(x, ̈) + μ x + V (t, x) = 0, where V (t, x) = (v1 (t, x), ..., vn (t, x)), if lim| x | → ∞ frac(vi (t, x), | x |) = 0, i = 1, ..., n, uniformly in t and V is bounded below or above for appropriate ranges of μ.

KW - Cone

KW - Fixed point theorem

KW - Non-autonomous system

KW - Periodic solutions

UR - http://www.scopus.com/inward/record.url?scp=67349167989&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67349167989&partnerID=8YFLogxK

U2 - 10.1016/j.na.2008.11.079

DO - 10.1016/j.na.2008.11.079

M3 - Article

AN - SCOPUS:67349167989

VL - 71

SP - 1271

EP - 1275

JO - Nonlinear Analysis, Theory, Methods and Applications

JF - Nonlinear Analysis, Theory, Methods and Applications

SN - 0362-546X

IS - 3-4

ER -