Novel strain-relief mechanisms for gc/si(100) coherent islands

Jeffery Drucker, Sergio Chaparro, Yangting Zhang, D. Chandrasekhar, Martha McCartney, David Smith

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Novel strain-relief mechanisms for Ge/Si(100) coherent islands were identified. Ge/Si(100) islands were grown at temperatures, T, between 450 and 650°C for effective Ge coverages between 3.5 and 14.0 monolayers. The mean dome size increased and island dislocation was delayed as T increased. For T > 600°C, very large hut clusters populated a peak in island size distributions distinct from and between those of huts and domes. For T > 550° C, large dome clusters may form trenches at their base which extend well into the Si substrate. Increasing T reduced the island size for trench formation. Cross-sectional energy dispersive xray nanoanalysis confirmed that Si diffuses into the Ge clusters at T > 550° C. Si interdiffusion was responsible for the increase in dome size and delay of dislocation with increasing T and the existence of very large hut clusters. AFM cross-sections indicate that there is a linear trench depth dependence on island size. A simple atomistic elastic model suggests that this experimentally observed self-limiting trench depth is kinetic rather than energetic in origin.

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposium - Proceedings
Pages125-130
Number of pages6
Volume583
StatePublished - 2000

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Novel strain-relief mechanisms for gc/si(100) coherent islands'. Together they form a unique fingerprint.

Cite this