Abstract

In recent years, brain network analysis has attracted considerable interests in the field of neuroimaging analysis. It plays a vital role in understanding biologically fundamental mechanisms of human brains. As the upward trend of multi-source in neuroimaging data collection, effective learning from the different types of data sources, e.g. multimodal and longitudinal data, is much in demand. In this paper, we propose a general coupling framework, the multimodal neuroimaging network fusion with longitudinal couplings (MMLC), to learn the latent representations of brain networks. Specifically, we jointly factorize multimodal networks, assuming a linear relationship to couple network variance across time. Experimental results on two large datasets demonstrate the effectiveness of the proposed framework. The new approach integrates information from longitudinal, multimodal neuroimaging data and boosts statistical power to predict psychometric evaluation measures.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer Verlag
Pages3-11
Number of pages9
ISBN (Print)9783030009304
DOIs
StatePublished - Jan 1 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period9/16/189/20/18

Fingerprint

Neuroimaging
Brain
Fusion
Fusion reactions
Factorise
Statistical Power
Psychometrics
Network Analysis
Longitudinal Data
Electric network analysis
Large Data Sets
Integrate
Predict
Evaluation
Experimental Results
Demonstrate
Framework

Keywords

  • Brain network fusion
  • Longitudinal
  • Multimodality
  • Representation

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Zhang, W., Shu, K., Wang, S., Liu, H., & Wang, Y. (2018). Multimodal fusion of brain networks with longitudinal couplings. In A. F. Frangi, C. Davatzikos, G. Fichtinger, C. Alberola-López, & J. A. Schnabel (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 3-11). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00931-1_1

Multimodal fusion of brain networks with longitudinal couplings. / Zhang, Wen; Shu, Kai; Wang, Suhang; Liu, Huan; Wang, Yalin.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. ed. / Alejandro F. Frangi; Christos Davatzikos; Gabor Fichtinger; Carlos Alberola-López; Julia A. Schnabel. Springer Verlag, 2018. p. 3-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhang, W, Shu, K, Wang, S, Liu, H & Wang, Y 2018, Multimodal fusion of brain networks with longitudinal couplings. in AF Frangi, C Davatzikos, G Fichtinger, C Alberola-López & JA Schnabel (eds), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11072 LNCS, Springer Verlag, pp. 3-11, 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018, Granada, Spain, 9/16/18. https://doi.org/10.1007/978-3-030-00931-1_1
Zhang W, Shu K, Wang S, Liu H, Wang Y. Multimodal fusion of brain networks with longitudinal couplings. In Frangi AF, Davatzikos C, Fichtinger G, Alberola-López C, Schnabel JA, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Springer Verlag. 2018. p. 3-11. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-00931-1_1
Zhang, Wen ; Shu, Kai ; Wang, Suhang ; Liu, Huan ; Wang, Yalin. / Multimodal fusion of brain networks with longitudinal couplings. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. editor / Alejandro F. Frangi ; Christos Davatzikos ; Gabor Fichtinger ; Carlos Alberola-López ; Julia A. Schnabel. Springer Verlag, 2018. pp. 3-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{002a39ce3b3048a5acd96cd97d7c3317,
title = "Multimodal fusion of brain networks with longitudinal couplings",
abstract = "In recent years, brain network analysis has attracted considerable interests in the field of neuroimaging analysis. It plays a vital role in understanding biologically fundamental mechanisms of human brains. As the upward trend of multi-source in neuroimaging data collection, effective learning from the different types of data sources, e.g. multimodal and longitudinal data, is much in demand. In this paper, we propose a general coupling framework, the multimodal neuroimaging network fusion with longitudinal couplings (MMLC), to learn the latent representations of brain networks. Specifically, we jointly factorize multimodal networks, assuming a linear relationship to couple network variance across time. Experimental results on two large datasets demonstrate the effectiveness of the proposed framework. The new approach integrates information from longitudinal, multimodal neuroimaging data and boosts statistical power to predict psychometric evaluation measures.",
keywords = "Brain network fusion, Longitudinal, Multimodality, Representation",
author = "Wen Zhang and Kai Shu and Suhang Wang and Huan Liu and Yalin Wang",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-00931-1_1",
language = "English (US)",
isbn = "9783030009304",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "3--11",
editor = "Frangi, {Alejandro F.} and Christos Davatzikos and Gabor Fichtinger and Carlos Alberola-L{\'o}pez and Schnabel, {Julia A.}",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings",

}

TY - GEN

T1 - Multimodal fusion of brain networks with longitudinal couplings

AU - Zhang, Wen

AU - Shu, Kai

AU - Wang, Suhang

AU - Liu, Huan

AU - Wang, Yalin

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In recent years, brain network analysis has attracted considerable interests in the field of neuroimaging analysis. It plays a vital role in understanding biologically fundamental mechanisms of human brains. As the upward trend of multi-source in neuroimaging data collection, effective learning from the different types of data sources, e.g. multimodal and longitudinal data, is much in demand. In this paper, we propose a general coupling framework, the multimodal neuroimaging network fusion with longitudinal couplings (MMLC), to learn the latent representations of brain networks. Specifically, we jointly factorize multimodal networks, assuming a linear relationship to couple network variance across time. Experimental results on two large datasets demonstrate the effectiveness of the proposed framework. The new approach integrates information from longitudinal, multimodal neuroimaging data and boosts statistical power to predict psychometric evaluation measures.

AB - In recent years, brain network analysis has attracted considerable interests in the field of neuroimaging analysis. It plays a vital role in understanding biologically fundamental mechanisms of human brains. As the upward trend of multi-source in neuroimaging data collection, effective learning from the different types of data sources, e.g. multimodal and longitudinal data, is much in demand. In this paper, we propose a general coupling framework, the multimodal neuroimaging network fusion with longitudinal couplings (MMLC), to learn the latent representations of brain networks. Specifically, we jointly factorize multimodal networks, assuming a linear relationship to couple network variance across time. Experimental results on two large datasets demonstrate the effectiveness of the proposed framework. The new approach integrates information from longitudinal, multimodal neuroimaging data and boosts statistical power to predict psychometric evaluation measures.

KW - Brain network fusion

KW - Longitudinal

KW - Multimodality

KW - Representation

UR - http://www.scopus.com/inward/record.url?scp=85053931630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053931630&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-00931-1_1

DO - 10.1007/978-3-030-00931-1_1

M3 - Conference contribution

SN - 9783030009304

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 3

EP - 11

BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings

A2 - Frangi, Alejandro F.

A2 - Davatzikos, Christos

A2 - Fichtinger, Gabor

A2 - Alberola-López, Carlos

A2 - Schnabel, Julia A.

PB - Springer Verlag

ER -