Abstract

Modeling and characterizing high-order connectivity patterns are essential for understanding many complex systems, ranging from social networks to collaboration networks, from finance to neuroscience. However, existing works on high-order graph clustering assume that the input networks are static. Consequently, they fail to explore the rich high-order connectivity patterns embedded in the network evolutions, which may play fundamental roles in real applications. For example, in financial fraud detection, detecting loops formed by sequenced transactions helps identify money laundering activities; in emerging trend detection, star-shaped structures showing in a short burst may indicate novel research topics in citation networks. In this paper, we bridge this gap by proposing a local graph clustering framework that captures structure-rich subgraphs, taking into consideration the information of high-order structures in temporal networks. In particular, our motif-preserving dynamic local graph cut framework (MOTLOC) is able to model various user-defined temporal network structures and find clusters with minimum conductance in a polylogarithmic time complexity. Extensive empirical evaluations on synthetic and real networks demonstrate the effectiveness and efficiency of our MOTLOC framework.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE International Conference on Big Data, Big Data 2018
EditorsYang Song, Bing Liu, Kisung Lee, Naoki Abe, Calton Pu, Mu Qiao, Nesreen Ahmed, Donald Kossmann, Jeffrey Saltz, Jiliang Tang, Jingrui He, Huan Liu, Xiaohua Hu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1156-1161
Number of pages6
ISBN (Electronic)9781538650356
DOIs
StatePublished - Jan 22 2019
Event2018 IEEE International Conference on Big Data, Big Data 2018 - Seattle, United States
Duration: Dec 10 2018Dec 13 2018

Publication series

NameProceedings - 2018 IEEE International Conference on Big Data, Big Data 2018

Conference

Conference2018 IEEE International Conference on Big Data, Big Data 2018
CountryUnited States
CitySeattle
Period12/10/1812/13/18

Fingerprint

Finance
Stars
Large scale systems

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems

Cite this

Zhou, D., He, J., Davulcu, H., & Maciejewski, R. (2019). Motif-Preserving Dynamic Local Graph Cut. In Y. Song, B. Liu, K. Lee, N. Abe, C. Pu, M. Qiao, N. Ahmed, D. Kossmann, J. Saltz, J. Tang, J. He, H. Liu, ... X. Hu (Eds.), Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 (pp. 1156-1161). [8622263] (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BigData.2018.8622263

Motif-Preserving Dynamic Local Graph Cut. / Zhou, Dawei; He, Jingrui; Davulcu, Hasan; Maciejewski, Ross.

Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. ed. / Yang Song; Bing Liu; Kisung Lee; Naoki Abe; Calton Pu; Mu Qiao; Nesreen Ahmed; Donald Kossmann; Jeffrey Saltz; Jiliang Tang; Jingrui He; Huan Liu; Xiaohua Hu. Institute of Electrical and Electronics Engineers Inc., 2019. p. 1156-1161 8622263 (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhou, D, He, J, Davulcu, H & Maciejewski, R 2019, Motif-Preserving Dynamic Local Graph Cut. in Y Song, B Liu, K Lee, N Abe, C Pu, M Qiao, N Ahmed, D Kossmann, J Saltz, J Tang, J He, H Liu & X Hu (eds), Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018., 8622263, Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, Institute of Electrical and Electronics Engineers Inc., pp. 1156-1161, 2018 IEEE International Conference on Big Data, Big Data 2018, Seattle, United States, 12/10/18. https://doi.org/10.1109/BigData.2018.8622263
Zhou D, He J, Davulcu H, Maciejewski R. Motif-Preserving Dynamic Local Graph Cut. In Song Y, Liu B, Lee K, Abe N, Pu C, Qiao M, Ahmed N, Kossmann D, Saltz J, Tang J, He J, Liu H, Hu X, editors, Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. Institute of Electrical and Electronics Engineers Inc. 2019. p. 1156-1161. 8622263. (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018). https://doi.org/10.1109/BigData.2018.8622263
Zhou, Dawei ; He, Jingrui ; Davulcu, Hasan ; Maciejewski, Ross. / Motif-Preserving Dynamic Local Graph Cut. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. editor / Yang Song ; Bing Liu ; Kisung Lee ; Naoki Abe ; Calton Pu ; Mu Qiao ; Nesreen Ahmed ; Donald Kossmann ; Jeffrey Saltz ; Jiliang Tang ; Jingrui He ; Huan Liu ; Xiaohua Hu. Institute of Electrical and Electronics Engineers Inc., 2019. pp. 1156-1161 (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018).
@inproceedings{42ff95e320c64a96b033da4d9723ef87,
title = "Motif-Preserving Dynamic Local Graph Cut",
abstract = "Modeling and characterizing high-order connectivity patterns are essential for understanding many complex systems, ranging from social networks to collaboration networks, from finance to neuroscience. However, existing works on high-order graph clustering assume that the input networks are static. Consequently, they fail to explore the rich high-order connectivity patterns embedded in the network evolutions, which may play fundamental roles in real applications. For example, in financial fraud detection, detecting loops formed by sequenced transactions helps identify money laundering activities; in emerging trend detection, star-shaped structures showing in a short burst may indicate novel research topics in citation networks. In this paper, we bridge this gap by proposing a local graph clustering framework that captures structure-rich subgraphs, taking into consideration the information of high-order structures in temporal networks. In particular, our motif-preserving dynamic local graph cut framework (MOTLOC) is able to model various user-defined temporal network structures and find clusters with minimum conductance in a polylogarithmic time complexity. Extensive empirical evaluations on synthetic and real networks demonstrate the effectiveness and efficiency of our MOTLOC framework.",
author = "Dawei Zhou and Jingrui He and Hasan Davulcu and Ross Maciejewski",
year = "2019",
month = "1",
day = "22",
doi = "10.1109/BigData.2018.8622263",
language = "English (US)",
series = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1156--1161",
editor = "Yang Song and Bing Liu and Kisung Lee and Naoki Abe and Calton Pu and Mu Qiao and Nesreen Ahmed and Donald Kossmann and Jeffrey Saltz and Jiliang Tang and Jingrui He and Huan Liu and Xiaohua Hu",
booktitle = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",

}

TY - GEN

T1 - Motif-Preserving Dynamic Local Graph Cut

AU - Zhou, Dawei

AU - He, Jingrui

AU - Davulcu, Hasan

AU - Maciejewski, Ross

PY - 2019/1/22

Y1 - 2019/1/22

N2 - Modeling and characterizing high-order connectivity patterns are essential for understanding many complex systems, ranging from social networks to collaboration networks, from finance to neuroscience. However, existing works on high-order graph clustering assume that the input networks are static. Consequently, they fail to explore the rich high-order connectivity patterns embedded in the network evolutions, which may play fundamental roles in real applications. For example, in financial fraud detection, detecting loops formed by sequenced transactions helps identify money laundering activities; in emerging trend detection, star-shaped structures showing in a short burst may indicate novel research topics in citation networks. In this paper, we bridge this gap by proposing a local graph clustering framework that captures structure-rich subgraphs, taking into consideration the information of high-order structures in temporal networks. In particular, our motif-preserving dynamic local graph cut framework (MOTLOC) is able to model various user-defined temporal network structures and find clusters with minimum conductance in a polylogarithmic time complexity. Extensive empirical evaluations on synthetic and real networks demonstrate the effectiveness and efficiency of our MOTLOC framework.

AB - Modeling and characterizing high-order connectivity patterns are essential for understanding many complex systems, ranging from social networks to collaboration networks, from finance to neuroscience. However, existing works on high-order graph clustering assume that the input networks are static. Consequently, they fail to explore the rich high-order connectivity patterns embedded in the network evolutions, which may play fundamental roles in real applications. For example, in financial fraud detection, detecting loops formed by sequenced transactions helps identify money laundering activities; in emerging trend detection, star-shaped structures showing in a short burst may indicate novel research topics in citation networks. In this paper, we bridge this gap by proposing a local graph clustering framework that captures structure-rich subgraphs, taking into consideration the information of high-order structures in temporal networks. In particular, our motif-preserving dynamic local graph cut framework (MOTLOC) is able to model various user-defined temporal network structures and find clusters with minimum conductance in a polylogarithmic time complexity. Extensive empirical evaluations on synthetic and real networks demonstrate the effectiveness and efficiency of our MOTLOC framework.

UR - http://www.scopus.com/inward/record.url?scp=85062636785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062636785&partnerID=8YFLogxK

U2 - 10.1109/BigData.2018.8622263

DO - 10.1109/BigData.2018.8622263

M3 - Conference contribution

AN - SCOPUS:85062636785

T3 - Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018

SP - 1156

EP - 1161

BT - Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018

A2 - Song, Yang

A2 - Liu, Bing

A2 - Lee, Kisung

A2 - Abe, Naoki

A2 - Pu, Calton

A2 - Qiao, Mu

A2 - Ahmed, Nesreen

A2 - Kossmann, Donald

A2 - Saltz, Jeffrey

A2 - Tang, Jiliang

A2 - He, Jingrui

A2 - Liu, Huan

A2 - Hu, Xiaohua

PB - Institute of Electrical and Electronics Engineers Inc.

ER -