Mapping gravitational lensing of the CMB using local likelihoods

Ethan Anderes, Lloyd Knox, Alexander Van Engelen

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We present a new estimation method for mapping the gravitational lensing potential from observed CMB intensity and polarization fields. Our method uses Bayesian techniques to estimate the average curvature of the potential over small local regions. These local curvatures are then used to construct an estimate of a low pass filter of the gravitational potential. By utilizing Bayesian/likelihood methods one can easily overcome problems with missing and/or nonuniform pixels and problems with partial sky observations (E- and B-mode mixing, for example). Moreover, our methods are local in nature, which allow us to easily model spatially varying beams, and are highly parallelizable. We note that our estimates do not rely on the typical Taylor approximation which is used to construct estimates of the gravitational potential by Fourier coupling. We present our methodology with a flat sky simulation under nearly ideal experimental conditions with a noise level of 1μK-arcmin for the temperature field, √2μK-arcmin for the polarization fields, with an instrumental beam full width at half maximum (FWHM) of 0.25 arcmin.

Original languageEnglish (US)
Article number043523
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume83
Issue number4
DOIs
StatePublished - Feb 24 2011
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Mapping gravitational lensing of the CMB using local likelihoods'. Together they form a unique fingerprint.

Cite this