Macromolecular diffractive imaging using imperfect crystals

Kartik Ayyer, Oleksandr M. Yefanov, Dominik Oberthür, Shatabdi Roy-Chowdhury, Lorenzo Galli, Valerio Mariani, Shibom Basu, Jesse Coe, Chelsie E. Conrad, Raimund Fromme, Alexander Schaffer, Katerina Dörner, Daniel James, Christopher Kupitz, Markus Metz, Garrett Nelson, Paulraj Lourdu Xavier, Kenneth R. Beyerlein, Marius Schmidt, Iosifina SarrouJohn Spence, Uwe Weierstall, Thomas A. White, Jay How Yang, Yun Zhao, Mengning Liang, Andrew Aquila, Mark S. Hunter, Joseph S. Robinson, Jason E. Koglin, Sébastien Boutet, Petra Fromme, Anton Barty, Henry N. Chapman

Research output: Contribution to journalArticlepeer-review

102 Scopus citations

Abstract

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed-and are of interest as a source of information about the dynamics of proteins-they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

Original languageEnglish (US)
Pages (from-to)202-206
Number of pages5
JournalNature
Volume530
Issue number7589
DOIs
StatePublished - Feb 10 2016

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Macromolecular diffractive imaging using imperfect crystals'. Together they form a unique fingerprint.
  • Macromolecular diffractive imaging using imperfect crystals

    Ayyer, K. (Contributor), Yefanov, O. M. (Contributor), Oberthür, D. (Contributor), Roy-Chowdhury, S. (Contributor), Galli, L. (Contributor), Mariani, V. (Contributor), Basu, S. (Contributor), Coe, J. (Contributor), Conrad, C. E. (Contributor), Fromme, R. (Contributor), Schaffer, A. (Contributor), Dörner, K. (Contributor), James, D. (Contributor), Kupitz, C. (Contributor), Metz, M. (Contributor), Nelson, G. (Contributor), Xavier, P. L. (Contributor), Beyerlein, K. R. (Contributor), Schmidt, M. (Contributor), Sarrou, I. (Contributor), Spence, J. C. H. (Contributor), Weierstall, U. (Contributor), White, T. A. (Contributor), Yang, J. (Contributor), Zhao, Y. (Contributor), Liang, M. (Contributor), Aquila, A. (Contributor), Hunter, M. S. (Contributor), Robinson, J. S. (Contributor), Koglin, J. E. (Contributor), Boutet, S. (Contributor), Fromme, P. (Contributor), Barty, A. (Contributor) & Chapman, H. N. (Contributor), Protein Data Bank (PDB), Feb 8 2017

    Dataset

  • Macromolecular diffractive imaging using imperfect crystals - Bragg data

    Ayyer, K. (Contributor), Yefanov, O. M. (Contributor), Oberthür, D. (Contributor), Roy-Chowdhury, S. (Contributor), Galli, L. (Contributor), Mariani, V. (Contributor), Basu, S. (Contributor), Coe, J. (Contributor), Conrad, C. E. (Contributor), Fromme, R. (Contributor), Schaffer, A. (Contributor), Dörner, K. (Contributor), James, D. (Contributor), Kupitz, C. (Contributor), Metz, M. (Contributor), Nelson, G. (Contributor), Xavier, P. L. (Contributor), Beyerlein, K. R. (Contributor), Schmidt, M. (Contributor), Sarrou, I. (Contributor), Spence, J. C. H. (Contributor), Weierstall, U. (Contributor), White, T. A. (Contributor), Yang, J. (Contributor), Zhao, Y. (Contributor), Liang, M. (Contributor), Aquila, A. (Contributor), Hunter, M. S. (Contributor), Robinson, J. S. (Contributor), Koglin, J. E. (Contributor), Boutet, S. (Contributor), Fromme, P. (Contributor), Barty, A. (Contributor) & Chapman, H. N. (Contributor), Protein Data Bank (PDB), Feb 10 2016

    Dataset

Cite this