Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila

Brenda Rascón, Jon Harrison

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

Oxygen provides the substrate for most ATP production, but also serves as a source of reactive oxygen species (ROS), which can induce cumulative macromolecular oxidative damage and cause aging. Pure oxygen atmospheres (100 kPa) are known to strongly reduce invertebrate lifespan and induce aging-related physiological changes. However, the nature of the relationship between atmospheric oxygen, oxidative stress, and lifespan across a range of oxygen levels is poorly known. Developmental responses are likely to play a strong role, as prior research has shown strong effects of rearing oxygen level on growth, size and respiratory system morphology. In this study, we examined (1) the effect of oxygen on adult longevity and (2) the effect of the oxygen concentration experienced by larvae on adult lifespan by rearing Drosophila melanogaster in three oxygen atmospheres throughout larval development (10, 21 and 40 kPa), then measuring the lifespan of adults in five oxygen tensions (210, 21, 40, 100 kPa). We also assessed the rate of protein carbonyl production for flies kept at 2, 10, 21, 40 and 100 kPa as adults (all larvae reared in normoxia). The rearing of juveniles in varying oxygen treatments affected lifespan in a complex manner, and the effect of different oxygen tensions on adult lifespan was non-linear, with reduced longevity and heightened oxidative stress at extreme high and low atmospheric oxygen levels. Moderate hypoxia (10 kPa) extended maximum, but not mean lifespan.

Original languageEnglish (US)
Pages (from-to)3441-3448
Number of pages8
JournalJournal of Experimental Biology
Volume213
Issue number20
DOIs
StatePublished - Oct 2010

Keywords

  • Aging
  • Drosophila melanogaster
  • Lifespan
  • Metabolism
  • Oxygen
  • Protein carbonylation

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Fingerprint Dive into the research topics of 'Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila'. Together they form a unique fingerprint.

  • Cite this