Abstract

Dynamic topic models (DTM) are commonly used for mining latent topics in evolving web corpora. In this paper, we note that a major limitation of the conventional DTM based models is that they assume a predetermined and fixed scale of topics. In reality, however, topics may have varying spans and topics of multiple scales can co-exist in a single web or social media data stream. Therefore, DTMs that assume a fixed epoch length may not be able to effectively capture latent topics and thus negatively affect accuracy. In this paper, we propose a Multi-Scale Dynamic Topic Model (MS-DTM) and a complementary Incremental Multi-Scale Dynamic Topic Model (IMS-DTM) inference method that can be used to capture latent topics and their dynamics simultaneously, at different scales. In this model, topic specific feature distributions are generated based on a multi-scale feature distribution of the previous epochs; moreover, multiple scales of the current epoch are analyzed together through a novel multi-scale incremental Gibbs sampling technique. We show that the proposed model significantly improves efficiency and effectiveness compared to the single scale dynamic DTMs and prior models that consider only multiple scales of the past.

Original languageEnglish (US)
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages5078-5085
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - Jan 1 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: Feb 2 2018Feb 7 2018

Other

Other32nd AAAI Conference on Artificial Intelligence, AAAI 2018
CountryUnited States
CityNew Orleans
Period2/2/182/7/18

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'IMS-DTM: Incremental multi-scale dynamic topic models <sup>∗</sup>'. Together they form a unique fingerprint.

  • Cite this

    Chen, X., Candan, K., & Sapino, M. L. (2018). IMS-DTM: Incremental multi-scale dynamic topic models . In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (pp. 5078-5085). AAAI press.