Impact of human body shape on forced convection heat transfer

Shri H. Viswanathan, Daniel M. Martinez, Lyle Bartels, Sai S. Guddanti, Konrad Rykaczewski

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Predicting human thermal comfort and safety requires quantitative knowledge of the convective heat transfer between the body and its surrounding. So far, convective heat transfer coefficient correlations have been based only upon measurements or simulations of the average body shape of an adult. To address this knowledge gap, here we quantify the impact of adult human body shape on forced convection. To do this, we generated fifty three-dimensional human body meshes covering 1st to 99th percentile variation in height and body mass index (BMI) of the USA adult population. We developed a coupled turbulent flow and convective heat transfer simulation and benchmarked it in the 0.5 to 2.5 m·s−1 air speed range against prior literature. We computed the overall heat transfer coefficients, hoverall, for the manikins for representative airflow with 2 m·s−1 uniform speed and 5% turbulence intensity. We found that hoverall varied only between 19.9 and 23.2 W·m−2 K−1. Within this small range, the height of the manikins had negligible impact while an increase in the BMI led to a nearly linear decrease of the hoverall. Evaluation of the local coefficients revealed that those also nearly linearly decreased with BMI, which correlated to an inversely proportional local area (i.e., cross-sectional dimension) increase. Since even the most considerable difference that exists between 1st and 99th percentile BMI manikins is less than 15% of hoverall of the average manikin, it can be concluded that the impact of the human body shape on the convective heat transfer is minor.

Original languageEnglish (US)
Pages (from-to)865-873
Number of pages9
JournalInternational journal of biometeorology
Volume67
Issue number5
DOIs
StatePublished - May 2023

Keywords

  • Computational thermal manikin
  • Diverse human body shapes
  • Forced convection simulation
  • Turbulent flow

ASJC Scopus subject areas

  • Ecology
  • Atmospheric Science
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Impact of human body shape on forced convection heat transfer'. Together they form a unique fingerprint.

Cite this