Hysteresis behavior and modeling of piezoceramic actuators

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Scopus citations

Abstract

A new theory is developed to model the hysteresis relation between polarization and electric field of piezoceramics. An explicit formulation governing the hysteresis is obtained by using saturation polarization, remnant polarization and coercive electric field. A new form of elastic Gibbs energy is proposed to address the coupling relations between electrical field and mechanical field. The nonlinear constitutive relations are derived from the elastic Gibbs energy and are applicable in the case of high stroke actuation. The hysteresis relations obtained using the current model are correlated with experimental results. The static deflection of a cantilever beam with surface-bonded piezoelectric actuators is analyzed by implementing the current constitutive relations. Numerical results reveal that hysteresis is an important issue in the application of piezoceramics.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages640-651
Number of pages12
Volume3985
StatePublished - 2000
EventSmart Structures and Materials 2000 - Smart Structures and Integrated Systems - Newport Beach, CA, USA
Duration: Mar 6 2000Mar 9 2000

Other

OtherSmart Structures and Materials 2000 - Smart Structures and Integrated Systems
CityNewport Beach, CA, USA
Period3/6/003/9/00

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Hysteresis behavior and modeling of piezoceramic actuators'. Together they form a unique fingerprint.

Cite this