How sea level change mediates genetic divergence in coastal species across regions with varying tectonic and sediment processes

Greer A. Dolby, Ryan A. Ellingson, Lloyd T. Findley, David K. Jacobs

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Plate tectonics and sediment processes control regional continental shelf topography. We examine the genetic consequences of how glacial-associated sea level change interacted with variable nearshore topography since the last glaciation. We reconstructed the size and distribution of areas suitable for tidal estuary formation from the last glacial maximum, ~20 thousand years ago, to present from San Francisco, California, USA (~38°N) to Reforma, Sinaloa, Mexico (~25°N). We assessed range-wide genetic structure and diversity of three codistributed tidal estuarine fishes (California Killifish, Shadow Goby, Longjaw Mudsucker) along ~4,600 km using mitochondrial control region and cytB sequence, and 16–20 microsatellite loci from a total of 524 individuals. Results show that glacial-associated sea level change limited estuarine habitat to few, widely separated refugia at glacial lowstand, and present-day genetic clades were sourced from specific refugia. Habitat increased during postglacial sea level rise and refugial populations admixed in newly formed habitats. Continental shelves with active tectonics and/or low sediment supply were steep and hosted fewer, smaller refugia with more genetically differentiated populations than on broader shelves. Approximate Bayesian computation favoured the refuge–recolonization scenarios from habitat models over isolation by distance and seaway alternatives, indicating isolation at lowstand is a major diversification mechanism among these estuarine (and perhaps other) coastal species. Because sea level change is a global phenomenon, we suggest this top-down physical control of extirpation–isolation–recolonization may be an important driver of genetic diversification in coastal taxa inhabiting other topographically complex coasts globally during the Mid- to Late Pleistocene and deeper timescales.

Original languageEnglish (US)
Pages (from-to)994-1011
Number of pages18
JournalMolecular ecology
Volume27
Issue number4
DOIs
StatePublished - Feb 1 2018
Externally publishedYes

Keywords

  • GIS
  • estuaries
  • fish
  • paleohabitat
  • population dynamics
  • refugia

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Fingerprint

Dive into the research topics of 'How sea level change mediates genetic divergence in coastal species across regions with varying tectonic and sediment processes'. Together they form a unique fingerprint.

Cite this