High indium composition (>20%) InGaN EPI-layers on ZnO substrates for very high efficiency solar cells

Andrew Melton, Balakrishnam Jampana, Nola Li, Muhammad Jamil, Tahir Zaidi, William Fenwick, Robert Opila, Christiana Honsberg, Ian Ferguson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this report we present recent results for MOCVD growth of high indium content InGaN films on ZnO substrates. Growth was attempted on both bulk ZnO as well as ZnO epilayers grown on sapphire by MOCVD. ZnO is an attractive alternative substrate for III-Nitrides because of its superior lattice match: specifically ZnO is perfectly matched with In0.18Ga0.82N and low cost of substrates. Stable InGaN films with >18% indium were achieved on the bulk substrates and were characterized by HRXRD, PL, and optical transmission. Varying the growth parameters - primarily growth temperature and In/(In + Ga) flow ratio - was found to affect the optical and structural properties of the films. By growing on a better matched substrate the high indium composition InGaN epitaxial films experience less strain and can therefore be grown thicker without creating relaxation-induced extended crystal defects. This is important, as high indium content InGaN films cannot be grown on GaN thick enough for full above-bandgap absorption without introducing detrimental extended crystal defects. This limitation is thought to be a limiting factor in the achievable ISC in InGaN solar cells.

Original languageEnglish (US)
Title of host publication2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Pages1123-1126
Number of pages4
DOIs
StatePublished - 2009
Event2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States
Duration: Jun 7 2009Jun 12 2009

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Other

Other2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Country/TerritoryUnited States
CityPhiladelphia, PA
Period6/7/096/12/09

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'High indium composition (>20%) InGaN EPI-layers on ZnO substrates for very high efficiency solar cells'. Together they form a unique fingerprint.

Cite this