Herbicide/Quinone binding interactions in photosystem II

Willem Vermaas, Gernot Renger, Charles J. Arntzen

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Many inhibitors prevent the oxidation of the primary electron-accepting quinone (QA) by the secondary quinone (QB) in photosystem II by displacem ent of QB from its binding site. On theother hand, plastoquinone-1 and 6-azido-5-decyl-2,3-dim ethoxy-/?-benzoquinone displace herbicides. Binding studies show the herbicide/quinone interaction to be (apparently) competitive. The herbicide binding is influenced differentially by various treatments. In this paper it is shown that the affinity of, for example, bromoxynil is decreased by thylakoid unstacking orby light- or reductant-induced reduction of certain thylakoid com ponents, whereas atrazine affinity remains unchanged. Furthermore, absence of HCO3 in the presence of formate leads to an affinity decrease of bromoxynil and atrazine, but to an increase in i-dinoseb affinity. Other differential photosystem II herbicide effects are known from the literature. Since different and unrelated groups of QA oxidation inhibitors have been found, and because of the above-mentioned dissimilarities in binding characteristics for different inhibitor groups, the hypothesisof non-identical, but “overlapping” binding sites for different herbicide groups and the native quinone must be more extensively defined. In this m anuscript we evaluate both the competitive herbicide/quinone binding m odel, and a m odel in which binding of one ligand alters the protein conformation resulting in a dram atic decrease in the binding affinity of ligands from other chemical groups; in this model ligands from the sam e or related chem ical groups bind competitively. Thus, the latter model proposes that only one herbicide or quinone m olecule can be bound with high affinityto the herbicide/quinone binding environm ent, but it depends on the chemical structure of the ligands whether the binding interaction between two ligands is trulycompetitive or more indirect (allosteric), mediated through the protein conformation.

Original languageEnglish (US)
Pages (from-to)368-373
Number of pages6
JournalZeitschrift fur Naturforschung. C, Journal of biosciences
Volume39
Issue number5
DOIs
StatePublished - May 1 1984
Externally publishedYes

Fingerprint

Photosystem II Protein Complex
Herbicides
Ligands
Atrazine
Protein Conformation
Thylakoids
formic acid
Corrosion inhibitors
Conformations
Binding Sites
Plastoquinone
Oxidation
benzoquinone
Reducing Agents
Proteins
Hand
Electrons
Light

Keywords

  • Allosteric interaction
  • Herbicide
  • Photosynthesis
  • Photosystem II
  • Plastoquinone

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Herbicide/Quinone binding interactions in photosystem II. / Vermaas, Willem; Renger, Gernot; Arntzen, Charles J.

In: Zeitschrift fur Naturforschung. C, Journal of biosciences, Vol. 39, No. 5, 01.05.1984, p. 368-373.

Research output: Contribution to journalArticle

@article{330b8c06b14f474197c6ac266dc1b63b,
title = "Herbicide/Quinone binding interactions in photosystem II",
abstract = "Many inhibitors prevent the oxidation of the primary electron-accepting quinone (QA) by the secondary quinone (QB) in photosystem II by displacem ent of QB from its binding site. On theother hand, plastoquinone-1 and 6-azido-5-decyl-2,3-dim ethoxy-/?-benzoquinone displace herbicides. Binding studies show the herbicide/quinone interaction to be (apparently) competitive. The herbicide binding is influenced differentially by various treatments. In this paper it is shown that the affinity of, for example, bromoxynil is decreased by thylakoid unstacking orby light- or reductant-induced reduction of certain thylakoid com ponents, whereas atrazine affinity remains unchanged. Furthermore, absence of HCO3 − in the presence of formate leads to an affinity decrease of bromoxynil and atrazine, but to an increase in i-dinoseb affinity. Other differential photosystem II herbicide effects are known from the literature. Since different and unrelated groups of QA oxidation inhibitors have been found, and because of the above-mentioned dissimilarities in binding characteristics for different inhibitor groups, the hypothesisof non-identical, but “overlapping” binding sites for different herbicide groups and the native quinone must be more extensively defined. In this m anuscript we evaluate both the competitive herbicide/quinone binding m odel, and a m odel in which binding of one ligand alters the protein conformation resulting in a dram atic decrease in the binding affinity of ligands from other chemical groups; in this model ligands from the sam e or related chem ical groups bind competitively. Thus, the latter model proposes that only one herbicide or quinone m olecule can be bound with high affinityto the herbicide/quinone binding environm ent, but it depends on the chemical structure of the ligands whether the binding interaction between two ligands is trulycompetitive or more indirect (allosteric), mediated through the protein conformation.",
keywords = "Allosteric interaction, Herbicide, Photosynthesis, Photosystem II, Plastoquinone",
author = "Willem Vermaas and Gernot Renger and Arntzen, {Charles J.}",
year = "1984",
month = "5",
day = "1",
doi = "10.1515/znc-1984-0511",
language = "English (US)",
volume = "39",
pages = "368--373",
journal = "Zeitschrift fur Naturforschung - Section C Journal of Biosciences",
issn = "0939-5075",
publisher = "Verlag der Zeitschrift fur Naturforschung",
number = "5",

}

TY - JOUR

T1 - Herbicide/Quinone binding interactions in photosystem II

AU - Vermaas, Willem

AU - Renger, Gernot

AU - Arntzen, Charles J.

PY - 1984/5/1

Y1 - 1984/5/1

N2 - Many inhibitors prevent the oxidation of the primary electron-accepting quinone (QA) by the secondary quinone (QB) in photosystem II by displacem ent of QB from its binding site. On theother hand, plastoquinone-1 and 6-azido-5-decyl-2,3-dim ethoxy-/?-benzoquinone displace herbicides. Binding studies show the herbicide/quinone interaction to be (apparently) competitive. The herbicide binding is influenced differentially by various treatments. In this paper it is shown that the affinity of, for example, bromoxynil is decreased by thylakoid unstacking orby light- or reductant-induced reduction of certain thylakoid com ponents, whereas atrazine affinity remains unchanged. Furthermore, absence of HCO3 − in the presence of formate leads to an affinity decrease of bromoxynil and atrazine, but to an increase in i-dinoseb affinity. Other differential photosystem II herbicide effects are known from the literature. Since different and unrelated groups of QA oxidation inhibitors have been found, and because of the above-mentioned dissimilarities in binding characteristics for different inhibitor groups, the hypothesisof non-identical, but “overlapping” binding sites for different herbicide groups and the native quinone must be more extensively defined. In this m anuscript we evaluate both the competitive herbicide/quinone binding m odel, and a m odel in which binding of one ligand alters the protein conformation resulting in a dram atic decrease in the binding affinity of ligands from other chemical groups; in this model ligands from the sam e or related chem ical groups bind competitively. Thus, the latter model proposes that only one herbicide or quinone m olecule can be bound with high affinityto the herbicide/quinone binding environm ent, but it depends on the chemical structure of the ligands whether the binding interaction between two ligands is trulycompetitive or more indirect (allosteric), mediated through the protein conformation.

AB - Many inhibitors prevent the oxidation of the primary electron-accepting quinone (QA) by the secondary quinone (QB) in photosystem II by displacem ent of QB from its binding site. On theother hand, plastoquinone-1 and 6-azido-5-decyl-2,3-dim ethoxy-/?-benzoquinone displace herbicides. Binding studies show the herbicide/quinone interaction to be (apparently) competitive. The herbicide binding is influenced differentially by various treatments. In this paper it is shown that the affinity of, for example, bromoxynil is decreased by thylakoid unstacking orby light- or reductant-induced reduction of certain thylakoid com ponents, whereas atrazine affinity remains unchanged. Furthermore, absence of HCO3 − in the presence of formate leads to an affinity decrease of bromoxynil and atrazine, but to an increase in i-dinoseb affinity. Other differential photosystem II herbicide effects are known from the literature. Since different and unrelated groups of QA oxidation inhibitors have been found, and because of the above-mentioned dissimilarities in binding characteristics for different inhibitor groups, the hypothesisof non-identical, but “overlapping” binding sites for different herbicide groups and the native quinone must be more extensively defined. In this m anuscript we evaluate both the competitive herbicide/quinone binding m odel, and a m odel in which binding of one ligand alters the protein conformation resulting in a dram atic decrease in the binding affinity of ligands from other chemical groups; in this model ligands from the sam e or related chem ical groups bind competitively. Thus, the latter model proposes that only one herbicide or quinone m olecule can be bound with high affinityto the herbicide/quinone binding environm ent, but it depends on the chemical structure of the ligands whether the binding interaction between two ligands is trulycompetitive or more indirect (allosteric), mediated through the protein conformation.

KW - Allosteric interaction

KW - Herbicide

KW - Photosynthesis

KW - Photosystem II

KW - Plastoquinone

UR - http://www.scopus.com/inward/record.url?scp=0001538667&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001538667&partnerID=8YFLogxK

U2 - 10.1515/znc-1984-0511

DO - 10.1515/znc-1984-0511

M3 - Article

VL - 39

SP - 368

EP - 373

JO - Zeitschrift fur Naturforschung - Section C Journal of Biosciences

JF - Zeitschrift fur Naturforschung - Section C Journal of Biosciences

SN - 0939-5075

IS - 5

ER -