Global dynamics of an seir epidemic model with vertical transmission

Michael Y. Li, Hal Smith, Liancheng Wang

Research output: Contribution to journalArticlepeer-review

188 Scopus citations

Abstract

We study a population model for an infectious disease that spreads in the host population through both horizontal and vertical transmission. The total host population is assumed to have constant density and the incidence term is of the bilinear mass-action form. We prove that the global dynamics are completely determined by the basic reproduction number R0(p, q), where p and q are fractions of infected newborns from the exposed and infectious classes, respectively. If R0(p, q) ≤ 1, the disease-free equilibrium is globally stable and the disease always dies out. If R0(p, q) > 1, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and the disease persists at an endemic equilibrium state if it initially exists. The contribution of the vertical transmission to the basic reproduction number is also analyzed.

Original languageEnglish (US)
Pages (from-to)58-69
Number of pages12
JournalSIAM Journal on Applied Mathematics
Volume62
Issue number1
DOIs
StatePublished - 2001

Keywords

  • Compound matrices
  • Endemic equilibrium
  • Epidemic models
  • Global stability
  • Latent period
  • Vertical transmission

ASJC Scopus subject areas

  • Applied Mathematics

Fingerprint Dive into the research topics of 'Global dynamics of an seir epidemic model with vertical transmission'. Together they form a unique fingerprint.

Cite this