Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome

Brian J. Morrow, James E. Graham, Roy Curtiss

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabills mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.

Original languageEnglish (US)
Pages (from-to)5106-5116
Number of pages11
JournalInfection and Immunity
Volume67
Issue number10
StatePublished - 1999
Externally publishedYes

Fingerprint

Nucleic Acid Hybridization
Salmonella typhi
Salmonella typhimurium
Operon
Genome
Ferrichrome
Host Specificity
Complementary DNA
Salmonella paratyphi A
Macrophages
Genes
Proteus
Subtractive Hybridization Techniques
Typhoid Fever
Human Genome
Mannose
Phagocytosis
Sequence Analysis
Virulence
Chromosomes

ASJC Scopus subject areas

  • Immunology

Cite this

@article{092018265e1a465ca79e15b15005f2c7,
title = "Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome",
abstract = "Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabills mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.",
author = "Morrow, {Brian J.} and Graham, {James E.} and Roy Curtiss",
year = "1999",
language = "English (US)",
volume = "67",
pages = "5106--5116",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "10",

}

TY - JOUR

T1 - Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome

AU - Morrow, Brian J.

AU - Graham, James E.

AU - Curtiss, Roy

PY - 1999

Y1 - 1999

N2 - Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabills mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.

AB - Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabills mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.

UR - http://www.scopus.com/inward/record.url?scp=0032858039&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032858039&partnerID=8YFLogxK

M3 - Article

C2 - 10496884

AN - SCOPUS:0032858039

VL - 67

SP - 5106

EP - 5116

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 10

ER -