Fluorescence branching ratios and magnetic tuning of the visible spectrum of SrOH

Duc Trung Nguyen, Timothy C. Steimle, Ivan Kozyryev, Meng Huang, Anne B. McCoy

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

The magnetic tuning of the low rotational levels in the X̃2Σ+ (0,0,0), Ã2Πr (0,0,0), and B̃2Σ+ (0,0,0) electronic states of strontium hydroxide, SrOH, have been experimentally investigated using high resolution optical field-free and Zeeman spectroscopy of a cold molecular beam sample. The observed Zeeman shifts and splittings are successfully modeled using a traditional effective Hamiltonian approach to account for the interaction between the Ã2Πr and B̃2Σ+ states. The determined magnetic g-factors for the X̃2Σ+, Ã2Πr, and B̃2Σ+ states are compared to those predicted by perturbation theory. The dispersed fluorescence resulting from laser excitation of rotationally resolved branch features of the 00 0 B̃2Σ+←X̃2Σ+, 00 0 Ã2Π3/2←X̃2Σ+ and 00 0 Ã2Π1/2←X̃2Σ+ transitions have been recorded and analyzed. The measured fluorescence branching ratios are compared with Franck-Condon calculations. The required bending motion wave functions are derived using a discrete variable representation (DVR) method. Implications for laser slowing and magneto-optical trapping experiments for SrOH are described.

Original languageEnglish (US)
Pages (from-to)7-18
Number of pages12
JournalJournal of molecular spectroscopy
Volume347
DOIs
StatePublished - May 2018

    Fingerprint

Keywords

  • Branching ratios
  • Franck-Condon factors
  • Strontium hydroxide

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Spectroscopy
  • Physical and Theoretical Chemistry

Cite this