TY - GEN
T1 - Expert guided rule based prioritization of scientifically relevant images for downlinking over limited bandwidth from planetary orbiters
AU - Chakraborty, Srija
AU - Das, Subhasish
AU - Banerjee, Ayan
AU - Gupta, Sandeep K.S.
AU - Christensen, Philip R.
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - Instruments onboard spacecraft acquire large amounts of data which is to be transmitted over a very low bandwidth. Consequently for some missions, the volume of data collected greatly exceeds the volume that can be downlinked before the next orbit. This necessitates the introduction of an intelligent autonomous decision making module that maximizes the return of the most scientifically relevant dataset over the low bandwidth for experts to analyze further. We propose an iterative rule based approach, guided by expert knowledge, to represent scientifically interesting geological landforms with respect to expert selected attributes. The rules are utilized to assign a priority based on how novel a test instance is with respect to its rule. High priority instances from the test set are used to iteratively update the learned rules. We then determine the effectiveness of the proposed approach on images acquired by a Mars orbiter and observe an expert-acceptable prioritization order generated by the rules that can potentially increase the return of scientifically relevant observations.
AB - Instruments onboard spacecraft acquire large amounts of data which is to be transmitted over a very low bandwidth. Consequently for some missions, the volume of data collected greatly exceeds the volume that can be downlinked before the next orbit. This necessitates the introduction of an intelligent autonomous decision making module that maximizes the return of the most scientifically relevant dataset over the low bandwidth for experts to analyze further. We propose an iterative rule based approach, guided by expert knowledge, to represent scientifically interesting geological landforms with respect to expert selected attributes. The rules are utilized to assign a priority based on how novel a test instance is with respect to its rule. High priority instances from the test set are used to iteratively update the learned rules. We then determine the effectiveness of the proposed approach on images acquired by a Mars orbiter and observe an expert-acceptable prioritization order generated by the rules that can potentially increase the return of scientifically relevant observations.
UR - http://www.scopus.com/inward/record.url?scp=85090807609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090807609&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85090807609
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 9440
EP - 9445
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -