Excitation wavelength dependent spectral evolution in Rhodobacter sphaeroides R-26 reaction centers at low temperatures

The Qy transition region

Su Lin, Jon Jackson, Aileen K W Taguchi, Neal Woodbury

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The spectral evolution associated with energy and electron transfer in quinone-depleted reaction centers from Rhodobacter sphaeroides strain R-26 was investigated at low temperatures using femtosecond transient absorbance spectroscopy as a function of excitation wavelength. Laser pulses of 150 fs duration and 5 nm spectral bandwidth at 760, 800, 810, and 880 nm were used to selectively excite the 760 nm transitions of the bacteriopheophytins (H), the bacteriochlorophyll monomer (B) transitions near 800 and 808 nm, and the 880 nm bacteriochlorophyll dimer (P) transition (810 nm excitation also presumably excites the upper exciton band of P). While the general features of the kinetic and spectral behavior observed are similar to previous room-temperature measurements, the excitation wavelength dependence is generally more pronounced and much longer-lived. The absorbance changes throughout the 740-1000 nm region are excitation wavelength dependent. These differences are clearly evident after several tens of picoseconds, and some spectral differences persist for hundreds of picoseconds. Previous reports have explained much of the excitation wavelength dependence of reaction centers in terms of formation of charge separation intermediates directly from B* or H* such as P+B- or B+H-. However, it is unlikely that either of these charge-separated states would persist after several tens or hundreds of picoseconds. Though this certainly does not rule out charge separation directly from excited states of B and H, it suggests that other explanations must be put forth to account for at least a large fraction of the excitation wavelength dependence observed. A likely possibility is spectral heterogeneity within the reaction center population, resulting in optical selection by different excitation wavelengths. This could explain much of the excitation wavelength dependent spectral evolution on time scales longer than 1 ps.

Original languageEnglish (US)
Pages (from-to)4016-4022
Number of pages7
JournalJournal of Physical Chemistry B
Volume102
Issue number20
StatePublished - May 14 1998

Fingerprint

Wavelength
wavelengths
excitation
Bacteriochlorophylls
Temperature
polarization (charge separation)
Excited states
Excitons
Temperature measurement
Dimers
Laser pulses
quinones
Monomers
Spectroscopy
temperature measurement
Bandwidth
electron transfer
Kinetics
monomers
energy transfer

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

Excitation wavelength dependent spectral evolution in Rhodobacter sphaeroides R-26 reaction centers at low temperatures : The Qy transition region. / Lin, Su; Jackson, Jon; Taguchi, Aileen K W; Woodbury, Neal.

In: Journal of Physical Chemistry B, Vol. 102, No. 20, 14.05.1998, p. 4016-4022.

Research output: Contribution to journalArticle

@article{d14d48a1a04445ee8ec60804c7774a7f,
title = "Excitation wavelength dependent spectral evolution in Rhodobacter sphaeroides R-26 reaction centers at low temperatures: The Qy transition region",
abstract = "The spectral evolution associated with energy and electron transfer in quinone-depleted reaction centers from Rhodobacter sphaeroides strain R-26 was investigated at low temperatures using femtosecond transient absorbance spectroscopy as a function of excitation wavelength. Laser pulses of 150 fs duration and 5 nm spectral bandwidth at 760, 800, 810, and 880 nm were used to selectively excite the 760 nm transitions of the bacteriopheophytins (H), the bacteriochlorophyll monomer (B) transitions near 800 and 808 nm, and the 880 nm bacteriochlorophyll dimer (P) transition (810 nm excitation also presumably excites the upper exciton band of P). While the general features of the kinetic and spectral behavior observed are similar to previous room-temperature measurements, the excitation wavelength dependence is generally more pronounced and much longer-lived. The absorbance changes throughout the 740-1000 nm region are excitation wavelength dependent. These differences are clearly evident after several tens of picoseconds, and some spectral differences persist for hundreds of picoseconds. Previous reports have explained much of the excitation wavelength dependence of reaction centers in terms of formation of charge separation intermediates directly from B* or H* such as P+B- or B+H-. However, it is unlikely that either of these charge-separated states would persist after several tens or hundreds of picoseconds. Though this certainly does not rule out charge separation directly from excited states of B and H, it suggests that other explanations must be put forth to account for at least a large fraction of the excitation wavelength dependence observed. A likely possibility is spectral heterogeneity within the reaction center population, resulting in optical selection by different excitation wavelengths. This could explain much of the excitation wavelength dependent spectral evolution on time scales longer than 1 ps.",
author = "Su Lin and Jon Jackson and Taguchi, {Aileen K W} and Neal Woodbury",
year = "1998",
month = "5",
day = "14",
language = "English (US)",
volume = "102",
pages = "4016--4022",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "20",

}

TY - JOUR

T1 - Excitation wavelength dependent spectral evolution in Rhodobacter sphaeroides R-26 reaction centers at low temperatures

T2 - The Qy transition region

AU - Lin, Su

AU - Jackson, Jon

AU - Taguchi, Aileen K W

AU - Woodbury, Neal

PY - 1998/5/14

Y1 - 1998/5/14

N2 - The spectral evolution associated with energy and electron transfer in quinone-depleted reaction centers from Rhodobacter sphaeroides strain R-26 was investigated at low temperatures using femtosecond transient absorbance spectroscopy as a function of excitation wavelength. Laser pulses of 150 fs duration and 5 nm spectral bandwidth at 760, 800, 810, and 880 nm were used to selectively excite the 760 nm transitions of the bacteriopheophytins (H), the bacteriochlorophyll monomer (B) transitions near 800 and 808 nm, and the 880 nm bacteriochlorophyll dimer (P) transition (810 nm excitation also presumably excites the upper exciton band of P). While the general features of the kinetic and spectral behavior observed are similar to previous room-temperature measurements, the excitation wavelength dependence is generally more pronounced and much longer-lived. The absorbance changes throughout the 740-1000 nm region are excitation wavelength dependent. These differences are clearly evident after several tens of picoseconds, and some spectral differences persist for hundreds of picoseconds. Previous reports have explained much of the excitation wavelength dependence of reaction centers in terms of formation of charge separation intermediates directly from B* or H* such as P+B- or B+H-. However, it is unlikely that either of these charge-separated states would persist after several tens or hundreds of picoseconds. Though this certainly does not rule out charge separation directly from excited states of B and H, it suggests that other explanations must be put forth to account for at least a large fraction of the excitation wavelength dependence observed. A likely possibility is spectral heterogeneity within the reaction center population, resulting in optical selection by different excitation wavelengths. This could explain much of the excitation wavelength dependent spectral evolution on time scales longer than 1 ps.

AB - The spectral evolution associated with energy and electron transfer in quinone-depleted reaction centers from Rhodobacter sphaeroides strain R-26 was investigated at low temperatures using femtosecond transient absorbance spectroscopy as a function of excitation wavelength. Laser pulses of 150 fs duration and 5 nm spectral bandwidth at 760, 800, 810, and 880 nm were used to selectively excite the 760 nm transitions of the bacteriopheophytins (H), the bacteriochlorophyll monomer (B) transitions near 800 and 808 nm, and the 880 nm bacteriochlorophyll dimer (P) transition (810 nm excitation also presumably excites the upper exciton band of P). While the general features of the kinetic and spectral behavior observed are similar to previous room-temperature measurements, the excitation wavelength dependence is generally more pronounced and much longer-lived. The absorbance changes throughout the 740-1000 nm region are excitation wavelength dependent. These differences are clearly evident after several tens of picoseconds, and some spectral differences persist for hundreds of picoseconds. Previous reports have explained much of the excitation wavelength dependence of reaction centers in terms of formation of charge separation intermediates directly from B* or H* such as P+B- or B+H-. However, it is unlikely that either of these charge-separated states would persist after several tens or hundreds of picoseconds. Though this certainly does not rule out charge separation directly from excited states of B and H, it suggests that other explanations must be put forth to account for at least a large fraction of the excitation wavelength dependence observed. A likely possibility is spectral heterogeneity within the reaction center population, resulting in optical selection by different excitation wavelengths. This could explain much of the excitation wavelength dependent spectral evolution on time scales longer than 1 ps.

UR - http://www.scopus.com/inward/record.url?scp=0000834832&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000834832&partnerID=8YFLogxK

M3 - Article

VL - 102

SP - 4016

EP - 4022

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 20

ER -