Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions

Osvaldo Sala, Laureano A. Gherardi, Debra P C Peters

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Climate change will result in increased precipitation variability with more extreme events reflected in more frequent droughts as well as more frequent extremely wet conditions. The increase in precipitation variability will occur at different temporal scales from intra to inter-annual and even longer scales. At the intra-annual scale, extreme precipitation events will be interspersed with prolonged periods in between events. At the inter-annual scale, dry years or multi-year droughts will be combined with wet years or multi-year wet conditions. Consequences of this aspect of climate change for the functioning ecosystems and their ability to provide ecosystem services have been underexplored. We used a process-based ecosystem model to simulate water losses and soil-water availability at 35 grassland locations in the central US under 4 levels of precipitation variability (control, +25, +50 + 75 %) and six temporal scales ranging from intra- to multi-annual variability. We show that the scale of temporal variability had a larger effect on soil-water availability than the magnitude of variability, and that inter- and multi-annual variability had much larger effects than intra-annual variability. Further, the effect of precipitation variability was modulated by mean annual precipitation. Arid-semiarid locations receiving less than about 380 mm yr−1 mean annual precipitation showed increases in water availability as a result of enhanced precipitation variability while more mesic locations (>380 mm yr−1) showed a decrease in soil water availability. The beneficial effects of enhanced variability in arid-semiarid regions resulted from a deepening of the soil-water availability profile and a reduction in bare soil evaporation. The deepening of the soil-water availability profile resulting from increase precipitation variability may promote future shifts in species composition and dominance to deeper-rooted woody plants for ecosystems that are susceptible to state changes. The break point, which has a mean of 380-mm with a range between 440 and 350 mm, is remarkably similar to the 370-mm threshold of the inverse texture hypothesis, below which coarse-texture soils had higher productivity than fine-textured soils.

Original languageEnglish (US)
Pages (from-to)213-227
Number of pages15
JournalClimatic Change
Volume131
Issue number2
DOIs
StatePublished - Jul 1 2015

ASJC Scopus subject areas

  • Global and Planetary Change
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions'. Together they form a unique fingerprint.

  • Cite this