Energy efficient in-memory computing platform based on 4-terminal spin hall effect-driven domain wall motion devices

Shaahin Angizi, Zhezhi He, Deliang Fan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

In this paper, we propose an energy efficient in-memory computing platform based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to architecture level simulation results show that, with 45% area increase, the proposed in-memory computing platform achieves the write energy ∼ 15.6 fJ/bit which is more than one order lower than that of standard 1-transistor 1-magnetic tunnel junction counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3% as compared with the conventional nonvolatile in-memory logic designs.

Original languageEnglish (US)
Title of host publicationGLSVLSI 2017 - Proceedings of the Great Lakes Symposium on VLSI 2017
PublisherAssociation for Computing Machinery
Pages77-82
Number of pages6
ISBN (Electronic)9781450349727
DOIs
StatePublished - May 10 2017
Externally publishedYes
Event27th Great Lakes Symposium on VLSI, GLSVLSI 2017 - Banff, Canada
Duration: May 10 2017May 12 2017

Publication series

NameProceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI
VolumePart F127756

Other

Other27th Great Lakes Symposium on VLSI, GLSVLSI 2017
CountryCanada
CityBanff
Period5/10/175/12/17

Keywords

  • Domain wall motion device
  • In-memory computing
  • Spin Hall effect

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Energy efficient in-memory computing platform based on 4-terminal spin hall effect-driven domain wall motion devices'. Together they form a unique fingerprint.

Cite this