Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries

Amandine Marie Cagnioncle, E. M. Parmentier, Linda Elkins-Tanton

Research output: Contribution to journalArticle

126 Citations (Scopus)

Abstract

Hydrous fluids derived by dehydration of the downgoing slab at convergent plate boundaries are thought to provoke wet melting in the wedge above the downgoing plate. We have investigated the distribution of hydrous fluid and subsequent melt in the wedge using two-dimensional models that include solid mantle flow and associated temperature distributions along with buoyant fluid migration and melting. Solid mantle flow deflects hydrous fluid from their buoyant vertical migration through the wedge. Melting therefore does not occur directly above the region where hydrous fluids are released from the slab. A melting front develops where hydrous fluids first encounter mantle material hot enough to melt. Wet melting is influenced by solid flow through the advection of fertile mantle material into the wet melting region and the removal of depleted material. The region of maximum melting occurs where the maximum flux of water from slab mineral dehydration reaches the wet melting region. The extent of melting (F) and melt production rates increase with increasing convergence rate and grain size due to increased temperatures along the melting front and to increased fractions of water reaching the melting front, respectively. The position of isotherms above the wet solidus varies with increasing slab dip and thereby also influences F and melt production rates. Applying the understanding of wet melting from this study to geochemical studies of the Aleutians may help elucidate the processes influencing fluid migration and melt production in that region. Estimates of the timescale of fluid migration, seismic velocity variation, and attenuation are also investigated.

Original languageEnglish (US)
Article numberB09402
JournalJournal of Geophysical Research: Solid Earth
Volume112
Issue number9
DOIs
StatePublished - Sep 4 2007
Externally publishedYes

Fingerprint

solids flow
Flow of solids
plate boundary
slab
Melting
slabs
melting
Water
water
Fluids
fluid
fluids
melt
Earth mantle
wedges
mantle
Dehydration
dehydration
effect
distribution

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science
  • Astronomy and Astrophysics
  • Oceanography

Cite this

Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. / Cagnioncle, Amandine Marie; Parmentier, E. M.; Elkins-Tanton, Linda.

In: Journal of Geophysical Research: Solid Earth, Vol. 112, No. 9, B09402, 04.09.2007.

Research output: Contribution to journalArticle

@article{5c00afcf9ba54c68bf369fb21636764a,
title = "Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries",
abstract = "Hydrous fluids derived by dehydration of the downgoing slab at convergent plate boundaries are thought to provoke wet melting in the wedge above the downgoing plate. We have investigated the distribution of hydrous fluid and subsequent melt in the wedge using two-dimensional models that include solid mantle flow and associated temperature distributions along with buoyant fluid migration and melting. Solid mantle flow deflects hydrous fluid from their buoyant vertical migration through the wedge. Melting therefore does not occur directly above the region where hydrous fluids are released from the slab. A melting front develops where hydrous fluids first encounter mantle material hot enough to melt. Wet melting is influenced by solid flow through the advection of fertile mantle material into the wet melting region and the removal of depleted material. The region of maximum melting occurs where the maximum flux of water from slab mineral dehydration reaches the wet melting region. The extent of melting (F) and melt production rates increase with increasing convergence rate and grain size due to increased temperatures along the melting front and to increased fractions of water reaching the melting front, respectively. The position of isotherms above the wet solidus varies with increasing slab dip and thereby also influences F and melt production rates. Applying the understanding of wet melting from this study to geochemical studies of the Aleutians may help elucidate the processes influencing fluid migration and melt production in that region. Estimates of the timescale of fluid migration, seismic velocity variation, and attenuation are also investigated.",
author = "Cagnioncle, {Amandine Marie} and Parmentier, {E. M.} and Linda Elkins-Tanton",
year = "2007",
month = "9",
day = "4",
doi = "10.1029/2007JB004934",
language = "English (US)",
volume = "112",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
publisher = "Wiley-Blackwell",
number = "9",

}

TY - JOUR

T1 - Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries

AU - Cagnioncle, Amandine Marie

AU - Parmentier, E. M.

AU - Elkins-Tanton, Linda

PY - 2007/9/4

Y1 - 2007/9/4

N2 - Hydrous fluids derived by dehydration of the downgoing slab at convergent plate boundaries are thought to provoke wet melting in the wedge above the downgoing plate. We have investigated the distribution of hydrous fluid and subsequent melt in the wedge using two-dimensional models that include solid mantle flow and associated temperature distributions along with buoyant fluid migration and melting. Solid mantle flow deflects hydrous fluid from their buoyant vertical migration through the wedge. Melting therefore does not occur directly above the region where hydrous fluids are released from the slab. A melting front develops where hydrous fluids first encounter mantle material hot enough to melt. Wet melting is influenced by solid flow through the advection of fertile mantle material into the wet melting region and the removal of depleted material. The region of maximum melting occurs where the maximum flux of water from slab mineral dehydration reaches the wet melting region. The extent of melting (F) and melt production rates increase with increasing convergence rate and grain size due to increased temperatures along the melting front and to increased fractions of water reaching the melting front, respectively. The position of isotherms above the wet solidus varies with increasing slab dip and thereby also influences F and melt production rates. Applying the understanding of wet melting from this study to geochemical studies of the Aleutians may help elucidate the processes influencing fluid migration and melt production in that region. Estimates of the timescale of fluid migration, seismic velocity variation, and attenuation are also investigated.

AB - Hydrous fluids derived by dehydration of the downgoing slab at convergent plate boundaries are thought to provoke wet melting in the wedge above the downgoing plate. We have investigated the distribution of hydrous fluid and subsequent melt in the wedge using two-dimensional models that include solid mantle flow and associated temperature distributions along with buoyant fluid migration and melting. Solid mantle flow deflects hydrous fluid from their buoyant vertical migration through the wedge. Melting therefore does not occur directly above the region where hydrous fluids are released from the slab. A melting front develops where hydrous fluids first encounter mantle material hot enough to melt. Wet melting is influenced by solid flow through the advection of fertile mantle material into the wet melting region and the removal of depleted material. The region of maximum melting occurs where the maximum flux of water from slab mineral dehydration reaches the wet melting region. The extent of melting (F) and melt production rates increase with increasing convergence rate and grain size due to increased temperatures along the melting front and to increased fractions of water reaching the melting front, respectively. The position of isotherms above the wet solidus varies with increasing slab dip and thereby also influences F and melt production rates. Applying the understanding of wet melting from this study to geochemical studies of the Aleutians may help elucidate the processes influencing fluid migration and melt production in that region. Estimates of the timescale of fluid migration, seismic velocity variation, and attenuation are also investigated.

UR - http://www.scopus.com/inward/record.url?scp=36049002541&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36049002541&partnerID=8YFLogxK

U2 - 10.1029/2007JB004934

DO - 10.1029/2007JB004934

M3 - Article

AN - SCOPUS:36049002541

VL - 112

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 9

M1 - B09402

ER -