TY - GEN
T1 - Detection of the third transition of InAs/GaAsSb quantum dots
AU - Ban, Keun Yong
AU - Bremner, Stephen P.
AU - Kuciauskas, Darius
AU - Dahal, Som N.
AU - Honsberg, Christiana
PY - 2011/12/1
Y1 - 2011/12/1
N2 - We have investigated InAs quantum dots (QDs) on GaAsSb barrier layers. Low temperature photoluminescence (PL) for InAs/GaAsSb with various δ-doping levels is performed to observe interband transitions. PL spectra of heavily doped QD samples show that the electrons injected from the δ-doping plane increase the intensity of the emission peak between the electron and hole first excited states, E1H1, not observed from undoped and lightly QD samples. Time resolved photoluminescence (TRPL) data as a function of δ-doping density reveal that the introduction of a δ-doping plane in the GaAsSb barrier decreases a carrier lifetime making recombination between ground states in QD area faster. As an evidence of carriers more injected from a δ-doping plane an Arrhenius fitting curve taken from temperature dependent PL indicates that the doped samples have the greater thermal activation energies than those of the lightly doped samples. Additionally, intersubband transitions of 20 multiple InAs QDs embedded in GaAsSb barriers are experimentally determined by low temperature (77K) Fourier Transformation-Infrared Spectroscopy (FT-IR) using a multiple internal reflection technique. It is noted that there is a broad peak around about 240meV corresponding to the energy separation between the electron ground state and the continuum state in the conduction band offset (CBO). The band structure based upon an eight band k.p method confirms the experimental results observed here. Furthermore, all related physical phenomena will be discussed as well.
AB - We have investigated InAs quantum dots (QDs) on GaAsSb barrier layers. Low temperature photoluminescence (PL) for InAs/GaAsSb with various δ-doping levels is performed to observe interband transitions. PL spectra of heavily doped QD samples show that the electrons injected from the δ-doping plane increase the intensity of the emission peak between the electron and hole first excited states, E1H1, not observed from undoped and lightly QD samples. Time resolved photoluminescence (TRPL) data as a function of δ-doping density reveal that the introduction of a δ-doping plane in the GaAsSb barrier decreases a carrier lifetime making recombination between ground states in QD area faster. As an evidence of carriers more injected from a δ-doping plane an Arrhenius fitting curve taken from temperature dependent PL indicates that the doped samples have the greater thermal activation energies than those of the lightly doped samples. Additionally, intersubband transitions of 20 multiple InAs QDs embedded in GaAsSb barriers are experimentally determined by low temperature (77K) Fourier Transformation-Infrared Spectroscopy (FT-IR) using a multiple internal reflection technique. It is noted that there is a broad peak around about 240meV corresponding to the energy separation between the electron ground state and the continuum state in the conduction band offset (CBO). The band structure based upon an eight band k.p method confirms the experimental results observed here. Furthermore, all related physical phenomena will be discussed as well.
UR - http://www.scopus.com/inward/record.url?scp=84861015825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861015825&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2011.6186704
DO - 10.1109/PVSC.2011.6186704
M3 - Conference contribution
AN - SCOPUS:84861015825
SN - 9781424499656
T3 - Conference Record of the IEEE Photovoltaic Specialists Conference
SP - 3503
EP - 3506
BT - Program - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
T2 - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Y2 - 19 June 2011 through 24 June 2011
ER -