### Abstract

For j ∈ {0, 1, 2} let Qj = {{(i + 3, j), (i+ 5, j + 2), (i+ 6, j + 1)}: i = 0,..., 6}. The 70 sets in B are partitioned into ten classes (P0, P1,..., P6, Q1, Q2, Q3) of seven sets each in this manner.

Original language | English (US) |
---|---|

Title of host publication | Handbook of Combinatorial Designs, Second Edition |

Publisher | CRC Press |

Pages | 11-22 |

Number of pages | 12 |

ISBN (Electronic) | 9781420010541 |

ISBN (Print) | 9781584885061 |

State | Published - Jan 1 2006 |

### ASJC Scopus subject areas

- Mathematics(all)
- Computer Science(all)

## Fingerprint Dive into the research topics of 'Design theory: Antiquity to 1950'. Together they form a unique fingerprint.

## Cite this

Anderson, I., Colbourn, C., Dinitz, J. H., & Griggs, T. S. (2006). Design theory: Antiquity to 1950. In

*Handbook of Combinatorial Designs, Second Edition*(pp. 11-22). CRC Press.