### Abstract

For j ∈ {0, 1, 2} let Qj = {{(i + 3, j), (i+ 5, j + 2), (i+ 6, j + 1)}: i = 0,..., 6}. The 70 sets in B are partitioned into ten classes (P0, P1,..., P6, Q1, Q2, Q3) of seven sets each in this manner.

Original language | English (US) |
---|---|

Title of host publication | Handbook of Combinatorial Designs, Second Edition |

Publisher | CRC Press |

Pages | 11-22 |

Number of pages | 12 |

ISBN (Electronic) | 9781420010541 |

ISBN (Print) | 9781584885061 |

State | Published - Jan 1 2006 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)
- Computer Science(all)

### Cite this

*Handbook of Combinatorial Designs, Second Edition*(pp. 11-22). CRC Press.

**Design theory : Antiquity to 1950.** / Anderson, Ian; Colbourn, Charles; Dinitz, Jeffrey H.; Griggs, Terry S.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

*Handbook of Combinatorial Designs, Second Edition.*CRC Press, pp. 11-22.

}

TY - CHAP

T1 - Design theory

T2 - Antiquity to 1950

AU - Anderson, Ian

AU - Colbourn, Charles

AU - Dinitz, Jeffrey H.

AU - Griggs, Terry S.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - For j ∈ {0, 1, 2} let Qj = {{(i + 3, j), (i+ 5, j + 2), (i+ 6, j + 1)}: i = 0,..., 6}. The 70 sets in B are partitioned into ten classes (P0, P1,..., P6, Q1, Q2, Q3) of seven sets each in this manner.

AB - For j ∈ {0, 1, 2} let Qj = {{(i + 3, j), (i+ 5, j + 2), (i+ 6, j + 1)}: i = 0,..., 6}. The 70 sets in B are partitioned into ten classes (P0, P1,..., P6, Q1, Q2, Q3) of seven sets each in this manner.

UR - http://www.scopus.com/inward/record.url?scp=84995436477&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84995436477&partnerID=8YFLogxK

M3 - Chapter

AN - SCOPUS:84995436477

SN - 9781584885061

SP - 11

EP - 22

BT - Handbook of Combinatorial Designs, Second Edition

PB - CRC Press

ER -