Design theory: Antiquity to 1950

Ian Anderson, Charles Colbourn, Jeffrey H. Dinitz, Terry S. Griggs

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations

Abstract

For j ∈ {0, 1, 2} let Qj = {{(i + 3, j), (i+ 5, j + 2), (i+ 6, j + 1)}: i = 0,..., 6}. The 70 sets in B are partitioned into ten classes (P0, P1,..., P6, Q1, Q2, Q3) of seven sets each in this manner.

Original languageEnglish (US)
Title of host publicationHandbook of Combinatorial Designs, Second Edition
PublisherCRC Press
Pages11-22
Number of pages12
ISBN (Electronic)9781420010541
ISBN (Print)9781584885061
StatePublished - Jan 1 2006

ASJC Scopus subject areas

  • Mathematics(all)
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Design theory: Antiquity to 1950'. Together they form a unique fingerprint.

  • Cite this

    Anderson, I., Colbourn, C., Dinitz, J. H., & Griggs, T. S. (2006). Design theory: Antiquity to 1950. In Handbook of Combinatorial Designs, Second Edition (pp. 11-22). CRC Press.