Density dependence of the saturated velocity in graphene

D. K. Ferry

Research output: Contribution to journalArticle

3 Scopus citations


The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.

Original languageEnglish (US)
Article number11LT02
JournalSemiconductor Science and Technology
Issue number11
StatePublished - Oct 6 2016



  • devices
  • electron transport
  • nanostructures
  • phonon scattering

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Cite this