Data quality: Stochastic environmental life cycle assessment modeling: A probabilistic approach to incorporating variable input data quality

Dale J. Kennedy, Douglas Montgomery, Beth H. Quay

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

A methodology is presented that enables incorporating expert judgment regarding the variability of input data for environmental life cycle assessment (LCA) modeling. The quality of input data in the life-cycle inventory (LCI) phase is evaluated by LCA practitioners using data quality indicators developed for this application. These indicators are incorporated into the traditional LCA inventory models that produce non-varying point estimate results (i.e., deterministic models) to develop LCA inventory models that produce results in the form of random variables that can be characterized by probability distributions (i.e., stochastic models). The outputs of these probabilistic LCA models are analyzed using classical statistical methods for better decision and policy making information. This methodology is applied to real-world beverage delivery system LCA inventory models. The inventory study results for five beverage delivery system alternatives are compared using statistical methods that account for the variance in the model output values for each alternative. Sensitivity analyses are also performed that indicate model output value variance increases as input data uncertainty increases (i.e., input data quality degrades). Concluding remarks point out the strengths of this approach as an alternative to providing the traditional qualitative assessment of LCA inventory study input data with no efficient means of examining the combined effects on the model results. Data quality assessments can now be captured quantitatively within the LCA inventory model structure. The approach produces inventory study results that are variables reflecting the uncertainty associated with the input data. These results can be analyzed using statistical methods that make efficient quantitative comparisons of inventory study alternatives possible. Recommendations for future research are also provided that include the screening of LCA inventory model inputs for significance and the application of selection and ranking techniques to the model outputs.

Original languageEnglish (US)
Pages (from-to)199-207
Number of pages9
JournalInternational Journal of Life Cycle Assessment
Volume1
Issue number4
StatePublished - 1996

Fingerprint

data quality
Life cycle
life cycle
modeling
Statistical methods
Beverages
Stochastic models
Model structures
Random variables
methodology
Probability distributions
Screening
policy making
ranking
decision making

Keywords

  • Data quality
  • LCA model uncertainty
  • Life Cycle Assessment (LCA) models
  • Stochastic models

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Science(all)
  • Environmental Chemistry

Cite this

@article{8361e4b2d12e48ed99c33f1a4932115a,
title = "Data quality: Stochastic environmental life cycle assessment modeling: A probabilistic approach to incorporating variable input data quality",
abstract = "A methodology is presented that enables incorporating expert judgment regarding the variability of input data for environmental life cycle assessment (LCA) modeling. The quality of input data in the life-cycle inventory (LCI) phase is evaluated by LCA practitioners using data quality indicators developed for this application. These indicators are incorporated into the traditional LCA inventory models that produce non-varying point estimate results (i.e., deterministic models) to develop LCA inventory models that produce results in the form of random variables that can be characterized by probability distributions (i.e., stochastic models). The outputs of these probabilistic LCA models are analyzed using classical statistical methods for better decision and policy making information. This methodology is applied to real-world beverage delivery system LCA inventory models. The inventory study results for five beverage delivery system alternatives are compared using statistical methods that account for the variance in the model output values for each alternative. Sensitivity analyses are also performed that indicate model output value variance increases as input data uncertainty increases (i.e., input data quality degrades). Concluding remarks point out the strengths of this approach as an alternative to providing the traditional qualitative assessment of LCA inventory study input data with no efficient means of examining the combined effects on the model results. Data quality assessments can now be captured quantitatively within the LCA inventory model structure. The approach produces inventory study results that are variables reflecting the uncertainty associated with the input data. These results can be analyzed using statistical methods that make efficient quantitative comparisons of inventory study alternatives possible. Recommendations for future research are also provided that include the screening of LCA inventory model inputs for significance and the application of selection and ranking techniques to the model outputs.",
keywords = "Data quality, LCA model uncertainty, Life Cycle Assessment (LCA) models, Stochastic models",
author = "Kennedy, {Dale J.} and Douglas Montgomery and Quay, {Beth H.}",
year = "1996",
language = "English (US)",
volume = "1",
pages = "199--207",
journal = "International Journal of Life Cycle Assessment",
issn = "0948-3349",
publisher = "Springer Science + Business Media",
number = "4",

}

TY - JOUR

T1 - Data quality

T2 - Stochastic environmental life cycle assessment modeling: A probabilistic approach to incorporating variable input data quality

AU - Kennedy, Dale J.

AU - Montgomery, Douglas

AU - Quay, Beth H.

PY - 1996

Y1 - 1996

N2 - A methodology is presented that enables incorporating expert judgment regarding the variability of input data for environmental life cycle assessment (LCA) modeling. The quality of input data in the life-cycle inventory (LCI) phase is evaluated by LCA practitioners using data quality indicators developed for this application. These indicators are incorporated into the traditional LCA inventory models that produce non-varying point estimate results (i.e., deterministic models) to develop LCA inventory models that produce results in the form of random variables that can be characterized by probability distributions (i.e., stochastic models). The outputs of these probabilistic LCA models are analyzed using classical statistical methods for better decision and policy making information. This methodology is applied to real-world beverage delivery system LCA inventory models. The inventory study results for five beverage delivery system alternatives are compared using statistical methods that account for the variance in the model output values for each alternative. Sensitivity analyses are also performed that indicate model output value variance increases as input data uncertainty increases (i.e., input data quality degrades). Concluding remarks point out the strengths of this approach as an alternative to providing the traditional qualitative assessment of LCA inventory study input data with no efficient means of examining the combined effects on the model results. Data quality assessments can now be captured quantitatively within the LCA inventory model structure. The approach produces inventory study results that are variables reflecting the uncertainty associated with the input data. These results can be analyzed using statistical methods that make efficient quantitative comparisons of inventory study alternatives possible. Recommendations for future research are also provided that include the screening of LCA inventory model inputs for significance and the application of selection and ranking techniques to the model outputs.

AB - A methodology is presented that enables incorporating expert judgment regarding the variability of input data for environmental life cycle assessment (LCA) modeling. The quality of input data in the life-cycle inventory (LCI) phase is evaluated by LCA practitioners using data quality indicators developed for this application. These indicators are incorporated into the traditional LCA inventory models that produce non-varying point estimate results (i.e., deterministic models) to develop LCA inventory models that produce results in the form of random variables that can be characterized by probability distributions (i.e., stochastic models). The outputs of these probabilistic LCA models are analyzed using classical statistical methods for better decision and policy making information. This methodology is applied to real-world beverage delivery system LCA inventory models. The inventory study results for five beverage delivery system alternatives are compared using statistical methods that account for the variance in the model output values for each alternative. Sensitivity analyses are also performed that indicate model output value variance increases as input data uncertainty increases (i.e., input data quality degrades). Concluding remarks point out the strengths of this approach as an alternative to providing the traditional qualitative assessment of LCA inventory study input data with no efficient means of examining the combined effects on the model results. Data quality assessments can now be captured quantitatively within the LCA inventory model structure. The approach produces inventory study results that are variables reflecting the uncertainty associated with the input data. These results can be analyzed using statistical methods that make efficient quantitative comparisons of inventory study alternatives possible. Recommendations for future research are also provided that include the screening of LCA inventory model inputs for significance and the application of selection and ranking techniques to the model outputs.

KW - Data quality

KW - LCA model uncertainty

KW - Life Cycle Assessment (LCA) models

KW - Stochastic models

UR - http://www.scopus.com/inward/record.url?scp=2842614985&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2842614985&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:2842614985

VL - 1

SP - 199

EP - 207

JO - International Journal of Life Cycle Assessment

JF - International Journal of Life Cycle Assessment

SN - 0948-3349

IS - 4

ER -